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ABSTRACT 

This paper is concerned with products of conjugacy classes in Chevalley 
groups. We prove that  in any quasisimple Chevalley group G proper or 
twisted, over any field, the extended covering number is bounded above 
linearly in terms of the rank of G, tha t  is, for some constant e, for any 
Chevalley group G, the product of any e �9 rank(G) non-central classes 
covers all of G. We give estimates for the constant e in different cases. 

1.  Introduct ion  

T h i s  p a p e r  is c o n c e r n e d  w i t h  c e r t a i n  p r o p e r t i e s  of  p r o d u c t s  of  c o n j u g a c y  c lasses  

in  g r o u p s .  I n  p a r t i c u l a r ,  we c o n s i d e r  t h e  c o v e r i n g  n u m b e r  a n d  e x t e n d e d  c o v e r i n g  

n u m b e r  in  v a r i o u s  c lasses  of  g r o u p s .  
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Definition: Let G be a group. The covering number cn(G) is the smallest integer 

m such that  C m = G for every conjugacy class C of G which is not contained in 

any proper normal subgroup of G. The extended covering number ecn(G) is the 

smallest integer e such that  the product CIC2 . ' -  Ce = G whenever C1, C2, �9 �9 C~ 

are conjugacy classes of G not contained in any proper normal subgroup of G. 

Here the product X1X2 is {xlx2 Ix1 E Xl ,x2  C X2} for X~ C G. 

Recent considerations of these concepts start  with the collection of papers 

[AH] of Arad, Herzog and their coworkers. There are references to numerous 

older papers in [AH]. 

What  is known about these numbers for specific groups? Dvir [D] proved that  

for the alternating group An, n _> 5, cn(An) = In/2], ecn(An) = [n /2 ]+ l .  A. Lev 

[Lev2] proved that  cn(PSLn(K))  = n under the condition I g I> 4 and n > 2. 

Zisser [Z] calculated the covering numbers of the sporadic groups. That  seems 

to be all that  is currently known about the precise values of cn(G), ecn(G) for 

natural  classes of groups. The calculations in these cases mentioned are difficult. 

Even estimates of these numbers are difficult to obtain. In [AH] it is shown 

that  for every finite simple group ecn(G) < k(k - 1)/2, where k is a number of 

conjugacy classes. The natural  classes of groups which could be studied from this 

point of view are different classes of linear groups, not necessarily finite. In [G] 

products of conjugacy classes are studied in the case of simple algebraic groups 

over algebraically closed fields of characteristic zero. In particular, it is proved 

there that  for such a group cn(G) <: 4rank(G),  ecn(G) < 4rank(G) + 2. In 

[EGH] it is proved that  there exists a constant c such that  cn(G) <_ c. rank(G) 

for every quasisimple Chevalley group G (here rank(G) is the Lie rank of G). 

The general constant which can be obtained from the proof given there is rather 

large. It  seems that  a more careful consideration should give c <_ 2, or at least 

c _< 10. However, to prove even the existence of such a constant is not easy. 

We also mention a related recent result of Lawther and Liebeck ILL] who proved 

that  every conjugacy class C of a finite simple group G of Lie type has diameter 

less than 8rank(G) + 5 (here the diameter of a conjugacy class C of a group G 

is the smallest integer d such that  G = Um<d(C k) C-1)m). Even more recently, 

Liebeck and Shalev [LiSh] proved very strong asymptotic  results concerning the 

diameters of simple groups. 

In this paper  we consider the extended covering numbers for the Chevalley 

groups. 

THEOREM: There is a constant e such that for any Chevallley group G = G(F)  

(over any field F), we have the inequality ecn(G) ~ e . rank(G). 
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The estimate for the constant e which can be obtained from our proof is rather 

large in general. In particular, we obtain ecn(G) <_ 288(r + 4) for G of rank r 

greater than 8. Over an algebraically closed field, the bound can be sharpened: 

here ecn(G) ~ 4r for groups of any r, and there are stronger results also in the 

case of other infinite fields. 

The above results lead us to pose the following question: 

QUESTION: Is there a general constant c such that  for every perfect linear group 

G <_ GL,~(K) over any field K for which the number een(G) exists, the inequality 

con(G) <_ c. n holds? 

We are confident that  the answer is positive for a number of natural  classes of 

groups G. As a first step, one should look at classes with additional restrictions, 

and we intend to investigate this further. Natural  classes to consider are finite 

groups and connected algebraic groups. The class of Chevalley groups plays an 

intermediate role between the two, and our results provide evidence that  the 

answer indeed may be positive. 

The lifting procedure which we use to compare "covering" in a parabolic 

subgroup and its Levi factor allows us in addition to extend the class of 

groups which satisfy our bound on extended covering numbers by adding some 

Chevalley groups over complete local rings. We hope that  further work on this 

will enable us to estimate covering numbers for finite perfect groups through 

covering numbers of their simple factors. 

We now outline the contents of the paper. In section 2 we survey the notation 

used. Section 3 is concerned with lifting information concerning covering numbers 

from quotient groups, which is then used later. In section 4 we obtain results 

for Chevalley groups over algebraically closed fields; in fact, more generally, we 

investigate here products of conjugacy classes which meet a Borel subgroup, 

under mild assumptions on the field size. In section 5 we obtain the bound for 

the extended covering numbers in the case where the defining field is infinite. The 

next short section is concerned with Chevalley groups of small rank. Finally, in 

section 7 we prove the general bound, by dealing with classical groups. We first 

analyze the special linear groups and establish the bound een(SL~(K))  <_ 6n+24, 

and then use that  to cover all the classical groups. In the process, we obtain the 

result that  in a crystallographic Chevalley group, every non-central conjugacy 

class has a non-empty intersection with a general Coxeter cell of the Bruhat 

decomposition - -  a result which is of independent interest. 

We mention one consequence of our results. Given a finite group G, the ex- 

tended generating number egen(G) is the least number k such that  in any k 
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conjugacy classes we can choose elements, one in each class, generating G. As 

a consequence of our results, using the.theorem [GK] of Guralnick and Kantor, 

we obtain an upper bound on the extended generating numbers in the finite 

Chevalley groups, which is linear in the rank of G. 

2. N o t a t i o n  and t e r m i n o l o g y  

2.1. Here R is an irreducible root system generated by a simple root system 

{~1 , . . . ,  a~}. We also write R = (oh , . . . ,  ~ ) .  Further, R +, R -  are the sets of 

positive and negative roots respectively, W(R) is the Weyl group for R. Our 

notation for root systems is that  of Bourbaki [B, Tables I X]. 

2.2. Let G be a simple algebraic group corresponding to a root system R which 

is defined and split over a field K.  Let a E R. We use the notation of Steinberg 

[Stl] for unipotent and semisimple root elements x~(t), t E K, ha(t), t E K*. 
Further, X~ = (xa(t)l t E K*) is the corresponding root subgroup of G(K). 
The subgroup of G(K) generated by all root subgroups is the Chevalley group 

over the field K corresponding to G, and is also denoted by G (if it leads to no 

confusion). In Section 3 we also consider the case when K is a ring. 

2.3. There are other types of groups which are also called Chevalley groups (or 

twisted Chevalley groups). Namely, in the case where K is a finite field and G is 

simply connected we consider groups of the form G(K)  F where F is a Frobenius 

map (see [C1, C2]). We also denote such a group by G. The automorphism F can 

be expressed in the form F = 0p, where 0 is the corresponding field automorphism 

and p is the corresponding graph automorphism. The field K e of 0-invariants 

we denote by k, except in the cases of Suzuki and Ree groups 2B2(q2), 2G2(q~), 

2F4(q2). For these groups we put k = K.  Chevalley groups (untwisted or finite 

twisted) are quasisimple except in a few cases ([Stl], [C1]). For a twisted group 

there exists also the root system which is obtained from R by gluing roots. We 

will denote this system by R F (when we speak only of a corresponding twisted 

group we shall omit the superscript F). The notation for root systems in the 

twisted cases corresponds to [C1] (note, however, that [C1] assigns root system 

Br for the groups of the type 2A2r(q2) instead of BC~). The notation for root 

subgroups (which can be one, two, or three parameter subgroups) is the same as 

for the untwisted case. The rank(C) is the number of simple roots in R (or in 

RF). 
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2.4. Let G be a Chevalley group (untwisted or twisted) over a field K corre- 

sponding to a root system R. Then 

H = (h~(t)l (~ �9 R, t e g*(or ,  t �9 k*, if p(a) = c0) , 

U = ( X , ~ ] a e R + ) ,  U - = ( X ~ I a C R - ) ,  B = H U ,  B - = H U - .  

The subgroup N (see [Stl], [C1]) contains the group H as a normal subgroup 

and N / H  ~- W.  By ~b we denote any preimage of an element w �9 W in the 

group N.  

An element g �9 G is called regular if it is regular as an element of the corre- 

sponding simple algebraic group. 

2.5. Let u �9 U. Then the element u can be written as a product of elements 

of the form x~ C X~, a > 0. This presentation depends on the order in which 

we take the product. If we fix the order of roots, such a presentation is defined 

uniquely ([St1], Lemma 17). Moreover, if c~ is a simple root and u~ = x~ is the 

corresponding root factor of u in some decomposition of u into a product of root 

elements, then the condition u~ = 1 does not depend on the decomposition (i.e., 

it holds or does not hold for every possible decomposition). This follows from the 

Chevalley commutator  formula. The Chevalley commutator  formula also implies 

the following fact. If  a is a simple root and if u~ = 1 for some u �9 U, then 

gug -1 �9 U for every g �9 (X~:~}. 

2.6. We use below the notion of big field. This is designed to guarantee the 

existence of sufficiently many regular elements in H satisfying certain desir- 

able conditions. We say that  a Chevalley group G is over a big field K if 

I K I> (4(I R I + 2 r ) + l )  2 for every case except R = G2, in which case I g I> 733. 

(The right sides of inequalities could be decreased for specific families; in partic- 

ular, the exponents 2, 3 could be deleted in the untwisted cases.) 

2.7. The general notation and terminology below are more or less standard. 

When we consider algebraic groups the bar over a set means the Zariski closure. 

The bar over a field means the algebraic closure. 

3. L i f t i ng  f r o m  f a c t o r  g r o u p s  

Definition 1: Let G be a group, A be a ring and let M be an A[G]-module. 

Further, let I[G] be the augmentation ideal of the group ring A[G]. We say that  

M is an augmentative A[G]-module if I[G]M = M.  

The following result is an extension of Lamina 3 of [EGH]. 
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PROPOSITION 1: Let F = ( f l , . . . , f k )  be a group and let A be a commutative 
ring, let A[F] be a group ring and I[F] its augmentation ideal Further, let M 
be an A[F]-module. Then the image of the homomorphism 

�9 : M G M . . . G M  ~M 

of A-modules given by the formula 

~((ml,...,mk)) = (I -- fl)ml + fl(1 -- f2)m2 +''" + flf2"" "fk-l(1 -- fk)mk 

contains I[F]M. Thus, if M is an augmentative F-module then �9 is surjective. 

Proo~ Put  m l  = 0 , . . . ,  m ~ - i  : 0,  mi+l  = 0 , . . . ,  rnk = 0. From the definition 

of (I) we get 

(1)  :1:2""" f ~ - 1 ( 1  - :i)M C I m ~  

for every / > 1 and 

(2) (1 - f l ) M  c lm~.  

The  inclusion (2) implies the inclusion ( 1 - f l ) I m ' ~  C Im'~, which in tu rn  implies 

f l ( Imr  c Im,~. Further,  ( 1 - f ~ - l ) M  = ( f ~ - l ) f ~ l M  C ( f l - 1 ) M  = ( 1 - f x ) M  

and therefore (1 - f { - 1 ) h n ' ~  C ImP. Thus f~l(Irn~) C Im,~. Assume now tha t  

(3) f~ l ( imr  c zm~ 

for every i < j .  Then  (3) also holds for i = j .  Indeed, it is enough to mult iply 

bo th  sides of the inclusion (1) (with i = j )  by f~-_llfT_12.., f ~ l  and then use the 

assumption to get 

(4) (1 - f j ) M  C Imq?, 

which gives us (3) for i = j .  Now (3) and (4) imply tha t  Imd) is an A[F]- 
submodule of the A[F]-module M and the factor module M / I m ~  is trivial as an 

F-module  (i.e., all elements of this module are F-invariants) .  Hence I[F]M C 
Imcb as claimed. If M is an augmentat ive A[F]-module then (I) is surjective. 
| 

The  following identi ty is easily checked by direct computat ion:  

"''(xkykxk )Yk Yk-I"''Y~I-=- 

(*) [~, y~] (y~[~, y~]y?b'" (y~y~"" yk-~[~, yk]y~.-, y~yi -~) 
(Here x l , . . . ,  xk and Y l , . . . ,  Yk are elements of a group.) 

From Proposi t ion 1 and (*) we get: 
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PROPOSITION 2: Let G be a group satisfying the following conditions: 

1. There exists a sequence of normal subgroups G >_ N -- No >_ N I  " " " > Ni " " 

(infinite or finite) satisfying the following conditions. 
a .  

G = lim GINs. k--- 

b. Every factor N~/N~+I is a module over a commutative ring Ai. 

c. [N, N,] C Ni+l for every i >_ O. 

2. There exist elements g l , . . . ,  gk E G satisfying the following condition. Let 

9-7,..., g~ be the images of the elements g l , . . . ,  gk in the factor group G / N  and 

let F -- ( ~ , . . .  , ~1 .  Then N~/N,+I is an augmentative Ai[F]-module for every i. 

Further, let X1, X2 C G be any two subsets such that X1 = X2 -- G / N  where 

X1, X2 are the images in the factor group G / N  of the sets X1, X2. 

Then 

N C (CLC2"" Ck)X1, 

G = (C1C2". Ck)X1X2. 

Proo~ We show that every element n E N can be written in the form 

(5) n (nlglnl ln2g2n21 - - 1  --1 --1 . .  . . . .  nkgknk )gk gk-1 "gl  1 

for some n l , . . . , n k  E N. 

Consider the A0[F]-module N/N1. According to Proposition 1 and (*) we have 

the equality (5) modulo N1. Assume 

(6) n - (n lglnl ln2g2n21 -1 -1 -1 �9 " ' 'nkgknk )gk gk--1 " ' g l l ( m ~  

for some i and some n l , . . . ,  n k  E N. We denote the right side of (6) by ri and 

put mz = nr~ 1. Hence (6) implies mi E N~. l~wther, the action of the element 

njgjn~ 1 on NJN~+I which is induced by conjugation is the same as the action 

of g3, by condition 1.c. Thus we can use (,)  and Proposition 1, putting in (*) the 

elements njgjn~ 1 instead of the elements Y3 and the elements l~ E N~ instead of 

the x 3. Therefore we can write mi in the form 

m~ -(llnlgln-{l111)(12n2g2n21121) . . . (lknkgkn;ll-~ 1) 

{n - l n - l ' " n  -1 n-1 ", (7) x ~ kgk k )( k- lgk-1 k _ l ) " ' ( n l g i l n l  1) (modNi+l) 

for some 11,. . . ,  lk E Nz. Now if we put l jnj  in instead of nj, we get the equality 

(5) modulo N~+I. This follows from (6), (7) and the definition of m,. Thus, 

correcting the elements np at every step i by multiplying them by elements from 
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Ni+l we construct elements satisfying (5), since G is a direct limit of the G/Ni 

(by condition 1.a). 
- - 1  - 1  . . Now put go = gk gk-1 . g l  1. From the definition of X1 we have go -- fono 

where fo E X1 and no E N. Then (5) implies 

N c (C1C2... Ck)X~no. 

Since Nn o 1 = N we have our first assertion. From the definition of X2 we have 

that  every g E G can be written in the form g = n f  where f E X2 and n E N. 

Therefore the second assertion follows from the first. I 

PROPOSITION 3: Let G, N be as in the previous Proposition and assume that 

conditions 1 and 2 hold. Then 

ecn(G) < 3k(ecn(G/N)), en(G) <_ 3k(cn(G/N)). 

Proo~ Let m = ecn(G/N) (we assume that  m exists - -  otherwise there is 

nothing to prove) and let C1, C 2 , . . . ,  C3km be conjugacy classes of G, where no 

Ci is contained in any proper normal subgroup of G. Let C, be the image of C, in 

GIN. Since the product of any m classes Ci equals the whole group G/N, we can 

write each element from the set { ~ , . . . , f f ~ }  (recall, that  these elements satisfy 

condition 2 as a product of m representatives of conjugacy classes C,). Therefore 

we can find a system of representatives f,  C C, in any km conjugacy classes, say, 

CI , . . . ,  Ckm such that  { ~ , . . . ,  ~-~) < ( f l , - . . ,  fkm). Now condition 2 will hold if 

we consider instead of elements g l , . . .  ,gk the elements f l , . . - ,  fk,~. Moreover, 

the sets X1 = Ckm+lCkm+2"'" C2km and X2 = C2km+lC2km+2"" C3km satisfy 

the conditions of Proposition 2. Thus we have G = CIC2 " "  C 3 k m  and therefore 

the first inequality holds. The second is proved in the same way. I 

One can apply the previous results to a more concrete situation. We announce 

a theorem, which can be proved using the techniques developed here; a proof will 

appear  in a later paper. 

THEOREM 1 : Let G be a Chevalley group (untwisted), over a complete local ring 

A with a maximal ideal M and residue field K = A/M.  Further, let G be the 

corresponding Chevalley group over the field K. Assume that the group G is 

quasisimple. Then 

ecn(a) <_ 6(ecn(a)), cn(a) <_ 6(cn(a)). 
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4. Covering and extended covering numbers for simple algebraic 
groups over algebraically closed f ields 

This section contains a generalisation and extension of the results [G] to the cases 

of non-zero characteristic. 

Let G be a simple algebraic group defined over a field K and let ~--g(G), e--dg(G) 

be topological covering and extended covering numbers of G, i.e., 

~ ( G )  = min{k  I C k = G}, -g~(G) = m i n { m  I C1C2""Cm = G} 

for all non-central conjugacy classes C, C1, �9 �9 C,~ (where X is the Zariski closure 

of X) .  A product of conjugacy classes is a constructible subset of G and therefore 

contains a Zariski open subset of its closure. Since the product of any two open 

subsets of G coincides with G ([Bo], I, 1, Prop. 1.3), we have 

2 1 on(G) < < cn(a),  ecn(a) < <_ een(a). 

Thus estimates for topological covering numbers give estimates for covering 

numbers. In the case where charK=0 it was proved in [G] that  

~ ( G )  _< 2r, e--C~(G) < 2r + 1. 

(Here r = rank(G).) The proof of such inequalities in [G] part ly depends on 

the characteristic of the ground field K being 0 because the theorem of Morozov 

Jacobson was used (which also holds in the case of characteristic p r 0 with the 

exception of G2 in characteristic 3, but only for unipotent elements of order p). 

Here we give a stronger result which holds in every characteristic. 

Let R be the root system corresponding to G. Put  l(R) = r + 1 if all roots in 

R have the same length and l(R) = 2r if R contains roots of different length. 

THEOREM 2: For K algebraically dosed, we have 

< < l(R). 

Moreover, if G is a group of type At,  Br, Cr then the inequalities above are 

equalities. 

The proof of this Theorem can be obtained from a more general fact formulated 

in the next Theorem. However, a more direct proof of Theorem 2 can be given; 

namely, using the fact that  the semisimple part  in the Jordan decomposition of 

an element g lies in the closure of the conjugacy class of g, and the fact that  

the closure of the conjugacy class of any non-trivial unipotent element contains 

a root element, one can simplify the proof below. 
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THEOREM 3: Let G be a Chevalley group of rank r over a big field K and let R be 

the corresponding root system. Further, let C1, . . . ,  Ck be non-central conjugacy 

classes of G such that each class Ci has a non-trivial intersection with a Borel 

subgroup of G. If k >_ l(R), then the product C1C2."Ck contains a regular 

semisimple element of G. I l K  is an infinite field, this product contains a subset 

of H which is dense in the maximal torus T. Moreover, if all roots in the root 

system R have the same length, then for every big field K and r > 1 this product 

contains all semisimple regular elements of G. 

Theorem 2 now follows easily from Theorem 3. Indeed, for any algebraic group 

G the group of points G(K) is a Chevalley group over K. Since C1C2""Ck 

contains a dense subset of T(K) then T(K) C C1C2".Ck. Hence the set 

C1C2...Ck contains all semisimple elements from the group G(K) and there- 

fore C1C2.." Ck = G(K) and we have the first assertion of Theorem 2. Consider 

the case when G is of type At, Br, Cr. Let g E G(K) be a long root element if 

R = Ar, Cr and let g --= h~l(i)h~(i ) . . .h~( i )  if R = Br, where i -- vzZ] - (we 

may assume that cha rK  ~ 2 for the case R = Br). Further, let C be the con- 

jugacy class of g in the group G(K). If we consider a natural form of G, i.e., 

SL, SO, Sp, we can see that C m ~ G(K) if m < l(R) (every element in such C m 

will always have fixed vectors in cases R = At, Cr; in case Br such an element 

has two independent eigenvectors with eigenvalues 1 and • 

We remark that the result claimed in [Kn] implies that there is equality in 

Theorem 2 also in the case Dr, provided that the characteristic is not 2. 

From Theorem 3 we also have the following result which will be used in the 

next section. 

COROLLARY 1: Let G be a simple algebraic group defined over an infinite field 

K. Let C1, . . . ,  Ck be non-central conjugacy classes of G(K). If k ~ l(R) then 

the product CIC2"" Ck is Zariski dense in G. 

Proof." Let c~ E Ci and let Qi be the conjugacy class of c~ in G(K). Since K is 

an infinite field and G is a simple group, the set G(K) is dense in G(K) ([Bo], 

18.3). Now C~ is dense in Qi and hence C1C2... Ck is dense in Q1Q2"'" Qk but 

the latter product is dense in G(K).  Thus C1C2... Ck is dense in G. | 

Now we start the proof of Theorem 3. 

LEMMA 1 : Let G be a Chevalley group corresponding to a root system R and let 

Go <_ G be a Chevalley group corresponding to a subsystem of R. Let hi, h2 C H 
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and g 6 Go, and assume that hi is regular in HGo and h2g ~ Z(HGo).  Let 

C1, C2 be the conjugacy classes of hi, h2g in HGo. Then every regular element 

of HGo of the form hlh2h with h E H A Go is contained in CIC2. 

Proof." Let 7 = hlh2h be a regular element of HGo,  and write 71 = hl,72 = h2g. 

There exists an element a 6 HGo such that  a721a  -1 = v717-1u = v h 2 1 h - l u  

where v 6 U 0 = U-  N Go, u 6 Uo = U A Go ([EG]). Since 71,7 -1 are regular in 

HGo, one can find elements Vl C U~-, ul C Uo such that  v -- [Vl, 71], u = [% Ul] 

(see [EG]). Thus, a ' ~ l a  -1 = (v171v{l)(ulT-lu-~ 1) and therefore 7 6 C1Cz. 
| 

LEMMA 2: Let G be a Chevalley group and let g = hu be a non-central element 

of a Borel subgroup, where h C H and u 6 U. Then there exists an element 

g' = h'u' where h' E H, u' E U which is conjugate to g and such that the 

element u' written as a product of positive root elements has a non-trivial factor 
r u~ E X~ corresponding to some simple root ~. 

Proof: We may assume u r h Otherwise we can conjugate g = h ~ Z(G) by 

an element from the group U. Further, assume that  in a decomposition of u as 

a product of positive root elements there are no factors corresponding to simple 

roots. Then for every simple root /~ we have w~hw~ 1 6 H and w~uw~ 1 6 U. 

Thus conjugating g by appropriate elements of N corresponding to simple roots 

we can get an appropriate element. | 

LEMMA 3: Let g' be the element from the previous lemma. Let ~ be a fixed 

simple root. I f  ~ and ~ have the same length, then there exists an element 

g" -- h"u" with h" 6 H, u" E U which is conjugate to g' and such that the 

element u" written as a product of positive root elements has a non-trivial factor 
/ !  

ufl E Xfl. 

Proof: Assume first that  a ,  ~ are neighbours in the Dynkin diagram. Let P~,~ 

be the parabolic subgroup corresponding to the subset {a, fl} of the simple root 

system, let V~,~ = Ru(P~,~) be its unipotent radical and let Ga,~ be the Chevalley 

subgroup of G generated by root subgroups of the root system (a, fl>. Assume 

that  the element g' does not satisfy the conditions for g" (otherwise there is 

nothing to prove). Hence we can write g' in the form 

(8) g'  = h'x~xa+~v 
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and g 6 Go, and assume that hi is regular in HGo and h2g ~ Z(HGo).  Let 

C1, C2 be the conjugacy classes of hi, h2g in HGo. Then every regular element 

of HGo of the form hlh2h with h E H A Go is contained in CIC2. 

Proof." Let 7 = hlh2h be a regular element of HGo,  and write 71 = hl,72 = h2g. 

There exists an element a 6 HGo such that  a721a  -1 = v717-1u = v h 2 1 h - l u  

where v 6 U 0 = U-  N Go, u 6 Uo = U A Go ([EG]). Since 71,7 -1 are regular in 

HGo, one can find elements Vl C U~-, ul C Uo such that  v -- [Vl, 71], u = [% Ul] 

(see [EG]). Thus, a ' ~ l a  -1 = (v171v{l)(ulT-lu-~ 1) and therefore 7 6 C1Cz. 
| 

LEMMA 2: Let G be a Chevalley group and let g = hu be a non-central element 

of a Borel subgroup, where h C H and u 6 U. Then there exists an element 

g' = h'u' where h' E H, u' E U which is conjugate to g and such that the 

element u' written as a product of positive root elements has a non-trivial factor 
r u~ E X~ corresponding to some simple root ~. 

Proof: We may assume u r h Otherwise we can conjugate g = h ~ Z(G) by 

an element from the group U. Further, assume that  in a decomposition of u as 

a product of positive root elements there are no factors corresponding to simple 

roots. Then for every simple root /~ we have w~hw~ 1 6 H and w~uw~ 1 6 U. 

Thus conjugating g by appropriate elements of N corresponding to simple roots 

we can get an appropriate element. | 

LEMMA 3: Let g' be the element from the previous lemma. Let ~ be a fixed 

simple root. I f  ~ and ~ have the same length, then there exists an element 

g" -- h"u" with h" 6 H, u" E U which is conjugate to g' and such that the 

element u" written as a product of positive root elements has a non-trivial factor 
/ !  

ufl E Xfl. 

Proof: Assume first that  a ,  ~ are neighbours in the Dynkin diagram. Let P~,~ 

be the parabolic subgroup corresponding to the subset {a, fl} of the simple root 

system, let V~,~ = Ru(P~,~) be its unipotent radical and let Ga,~ be the Chevalley 

subgroup of G generated by root subgroups of the root system (a, fl>. Assume 

that  the element g' does not satisfy the conditions for g" (otherwise there is 

nothing to prove). Hence we can write g' in the form 

(8) g'  = h'x~xa+~v 
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Now consider case 2. Let Pfl be the parabolic subgroup corresponding to 

the simple root subsystem {fl} and let Vfl be its unipotent radical. We have 

ui = vlui~,u2 = u2flv2 where vl,v2 �9 V~. Note, that  for every T �9 H(X+~) we 

have TVfl7 -1 = Vfl. Further, there exist elements rri, a2 �9 (X+~) such that 

a l h i u i f l c ~  i ' �9 c r 2 h 2 u 2 f l r y 2 1  " , --~ Ul f lWl f l  , : W2flU2fl 

where ~bi~, ~b2z are different preimages in N of w~ (this follows from the fact that  

non-central conjugacy classes cannot be contained in the Borel subgroup). Now 

~bi~b2o = h �9 H. Moreover, conjugating ~bi~ by an appropriate element from 

the group H we can get [h, x~] r 1 (here we use the assumption of the lemma 

about the field K).  Now one can see that the e l e m e n t  x a ( a l g l r  1 

is an appropriate element from C1C2. | 

LEMMA 5: Let G be a Chevalley group of rank r > 1 over a big field K.  Let 

j > 1, and write 

X 3 -- {h~l (x l )h~2(x2)"  "h~_~(xj- i )ho[ xi,  x2 , . . .  , x j -1  �9 K*(or  k*)}, 

where h0 is a fixed element from the group ( h ~  (s)]s  �9 K* (or k*), m >_ j) .  

Suppose that there is no root in the root subsystem Rj  = ( a l , . . . ,  as) which 

is orthogonal to each O r a l , . . . ,  a j - i .  

Then the set X j  contains a regular element h �9 H of the group HGj  where 

G = (X•  3  ̀ �9 ,%)). 

Proof'. Assume G is untwisted. Let ")/ E Rj.  The condition of the lemma 

implies that 3  ̀ is not orthogonal to some ai with i < j .  Thus the image of the 

group (h~,(x)lx E g* )  in K* under the homomorphism 3' is equal to g *'~ where 

n = <  a~, 7 >. Note that n = 4-1,4-2,4-3 and the last is possible only for the 

root system G2 which does not satisfy the condition of the lemma. Thus 

(9) K c �9 K*))  c K*. 

Now put 

Xs~ = (x �9 Xsl3`(x ) = 1}. 

Suppose that K is a finite field. Then (9) implies 

21X l 
(10) ]Xs~l-< IK*]" 
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Therefore 
2ix l + x IRjl 

(the last inequality follows from the assumption that  K is a big field for G). 

Hence the set 

~/c R+ 

is not empty. The definition of Xj  implies that  all its elements are regular in 

HG~. 
Suppose that  K is an infinite field. Then we may consider the group HGj as a 

subgroup of T(K)Gj(K)  where Gj is the corresponding simple algebraic group. 

Then the set X 3 is a subset of Yj (K) where Yj is an algebraically closed subset 

of Gj which is the translation of a (j - 1)-dimensional torus by the fixed element 

h0. Unirationality of the torus and infiniteness of K imply density of Xj  in Yj 

(see [Bo], 18.3) and hence X~ has a non-empty intersection with any non-empty 

open subset of Y3" On the other hand, (9) implies that  the set Xj~ is contained 

in a proper closed subset of Yj and therefore the set of regular elements of the 

group TGj  is open in Yj. 

Let now G be a finite twisted group. Again we can exclude the case where 

the root system is G2 and for the same reason also the case 2F4(q). Now instead 

of root maps 7: H ) K* we have to consider either such maps or pairs of 

maps 71,72: H ) K*, where 7 E R is a root such that  the corresponding root 

subgroup X~ is a two parameter  subgroup X~ = X.y(u, v) and where 71,7)'5 are 

the homomorphisms induced by the action of H on the parameters  of X.y. For 

every 7t (where l = 1 or 1 = 1, 2) instead of (9) we now have 

k .2 c ",/l((h,~.(x)l x e K*(or,  x e k*))) C K* 

(recall that  k = K if G is a Suzuki or a Ree group, and otherwise k = K~ Since 

we exclude the case G2, i.e., the type 3D4, we have 

Ik* l > 
2 

Now using the same argument as in the untwisted case we show that  the set 

Z ~. = X j \ U _ e R + X j ~  is not empty if Ig*l > (21R]+1)  2 �9 This gives us a 

semisimple regular element in the set X 3. | 
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LEMMA 6: Let G be a Chevalley group of  r ank  > 1 over a big field. 

Let Y = { f l l , . . . , f i r }  C R be a set of linearly independent roots  and let 

Hy  = {h& (t2)h& (t2) . . .  hzr(t2)[ tl ,  t 2 , . . . ,  tr E K * ( o r  k* in the twisted case)}. 

Further, for every i < r fix a set M, C K*2(or  k*2), IM~I < 2 (if R ~ G2) and 

IMII < 3 (if R = G2). Put  

HM = {h&(t2)h&(t22) ' ' ' h f l r ( t 2 ) [  t 2 E Mi for some 1 < i < r}. 

Then for every h E H the set h(Hy \ HM) contains a regular element. I f  K is 

infinite then the set h (Hy \ HM) is dense in T, 

Proof." We use the same a rguments  as in the previous lemma.  Namely,  let hH~ 

be the subset  of hHy  consisting of such elements  h ~ which satisfy the condit ion 

~,(h ~) = 1 for some posit ive root  ~, (or %(h') -- 1 for some i = 1, 2 in twisted cases). 

Since the roots  in Y are linearly independent ,  K *~ C 7(Hy)  (or k *n C ~i(Hy))  

where n = 2, 4, 6. If  we exclude the groups with R = G2 we have n <_ 4 and we 

get as above 
]hHy I �9 4]R] IhH l <_ 

Ik*l 
Further ,  f rom the definition of hHM we have 

]hHM] ~ 
2 . 4 .  r ihHy ] 

Ik*l 
Thus 

]hHy I �9 4(]R I + 2r) 
IhH~ [3 hgM] <_ 

Ik*l 
Now if ]g]  > (4(IR I + 2r) + 1) 2 then ]k*] > 4(]R I + 2r) and therefore the set 

h(Hy \ HM) contains a regular  element. Now consider the case R = G2. Here 

(even in the twisted case 3D4(q3)) we have only one p a r a m e t e r  root  subgroups.  

Now we have 

]hH~, I ~_ ]hHy] . 6]R+]/]k*l = IhHy] . (36/]k*]), 

]hHM[ < 6 . 3 . r .  [hHyl/Ik* ] = ]hHy[ . (36/]k* 0. 

Thus,  if ]K I > (36 + 36 + 1) 3 then  Ik*l > 36 + 36 and we have a regular  element 

in h(Hy ". HM). 

The assert ion abou t  the density of h(Hy \ HM) is obvious. | 
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LEMMA 7: Assume that R is not one of B2 (= C2), G2, F4 or a non-crystallo- 

graphic system corresponding to 2F4. Then there exists a numbering of  simple 

roots a l , . . . ,  a~ such that for every 1 < i < r - 1 the root system generated by 

a l , . . . ,  ai+l is irreducible and does not contain a root ~/ which is orthogonal to 

all a l ,  �9 �9 �9 a~. 

Proo~ For the cases R = A~,B~(r > 2),C~(r > 2) ,D~(r  > 4) we can take the 

standard numbering of Bourbaki ([B], Tables I-X).  In cases R = E6, ET, Es one 

can take the numbering where roots a l , . . . ,  a ~ - i  generate the root system D~- I  

and ~ is the root of the type � 8 9  e~). Note that  roots of the latter type cannot 

be orthogonal simultaneously to a pair of roots Q • e 3. | 

Now we give the proof of Theorem 3 for the case where r > 1 and all the roots 

are of the same length. 

We assume that  the numbering of simple roots in R satisfies the conditions 

of Lemma 7. Let R, be the irreducible root system generated by the subset 

{ a ~ , . . . ,  a~} of the simple root system and let G~ -- (X~I7 �9 R,). Let P~ be the 

standard parabolic subgroup of G corresponding to R~ and let V~ be its unipotent 

radical. Then HG~ is a Levi factor of Pi. 

According to Lemmas 2 and 3 we can choose representatives gl = hlu l  �9 

C 1 , . . . , g k  = hkuk �9 Ck where h i , . . . , h k  �9 H, Ul , . . . ,Uk  �9 U such that  in an 

expression of each u, as a product of positive root elements there is a non-trivial 

factor corresponding to the root a l .  We can write the elements gl, g2 in the form 

(11) gl -- h 'h~(p)u lc~v l , ,  g2 = h"ha~(q)u2~,v12 

where h', h" are elements from the subgroup of H generated by elements h ~  (a) 

with j > 1, 1 r ula~,U2~l �9 X~I, vii,v12 �9 V1. Further, we can find elements 

o, T �9 HG1 such that  

(12) (ah'ha I (p)ul~a-1)(~'h"h~1 (q)u2a2~ --~) = h ' h " h ~  (t), 

where t E K* (or t C k*) is any prescribed element except maybe one for which 

h'h"h~ 1 (t) E Z(HG1)  (this follows from [EG] and the fact that  all non-trivial 

unipotent elements in G1 are HGl-conjugate) .  

From (11) and (12) we have elements h ' h " h ~  (t)v �9 CLC2, where v �9 V1 

and where t can be any prescribed element from K* ( or k*) except maybe one 

for which h'h"h~ 1 (t) �9 Z(HG1) .  By Lemma 5 we can choose the value of the 

parameter  t such that  the element h'h"h~ 1 (t) is a regular element in HG2 (note 

that  the possible exclusion of elements h'h"ha~(t) �9 Z(HG1)  from the set X2 
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defined in Lemma 5 does not influence the claim because the elements excluded 

cannot be regular for HG2). Put  h2 = h'h"hm(t). Thus, h2v E C1C2 where 

]z2 is a regular element of HG> Since ]z2 E H is a regular element of the group 

HG2 there exists a unipotent element u from the group U2 = G2 N U such that 

u]z2vu -1 = h2v2 where v2 E V2. Indeed, the element v E 1/'1 can be written in 
~ ,  

the form v = Vl'U~ where vl E U2 and v2 E V2. Since tz2 is a regular element of 

HG2, every element of U2 can be written in the form [~-1,~] for some ~ E U2 

(this is a simple and well-known fact see, for instance, lEG]). Thus, we have 

~-* = []z21,~] for some ~ E U2. Hence ~l~2v~ - I  = t ~ 2 [ ~ - 1 , ~ ] ( ~  -1) where 

f i ~ - i  E V2, [~-1,~] E U2. Moreover~ the element [~i-1,~] lies in the next 

member of the central series of the group /]2, compared with the element ~1. 

Thus acting in this way we can eliminate the gl-part of v. 

Now we have an element of the form ]z2~)2 E C1C2 and ga = hau3 E C3, where 

~t2 is a regular element of HG2, v2 E V~, ha E H, ua E U is an element which 

has a non-trivial Ual-factor. Let Q be the conjugacy class of h2v2. Note that 

]z=~2, ga E Pc. Moreover, the image of ]ze~2 in the factor group P2/V2 TM HG2 is a 

regular semisimple element of HG= and the image of ga in P2/V2 is a non-trivial 

element (because the u m-factor of u3 is non-trivial). Thus we can apply Lemma 

1 to the conjugacy classes of images of elements h2v2, g3 in P2/V2 -~ HG2. This 

implies that  the product QC3 contains elements of the form 

(13) ]~2h3h~ 1 (tl)h~2 (t2)v2 

where v2 E V2 and where parameters t l , t2  take all possible values for which 

the element Iz2h3h m(tl)h~2(t2 ) is regular in HG2. Lemma 5 guarantees that 

among such elements one can find a regular element of the group HG3. Thus, 

lz3v2 E QC3 c C1C~C3 where ]z3 is a regular element of the group HG3 and 

v2 E V2. Since the element ]z3 is regular in HG3 we can conjugate the element 

h3v2 by an appropriate element from U3 = HG3 M U (as we did above) to get an 

element of the form ]z3~3 E C1C2C3, where v3 E V3. Continuing this process we 

obtain in the product of r + 1 conjugacy classes all regular elements of H. The 

further multiplication cannot eliminate any such element, again by Lemma 1. 

Consider now the case r = 1. 
Here G is of type A1, 2A2(q2), 2B2(q2), 2G2(q2). We take representatives of 

conjugacy classes gl E Cl,g2 E C2 in the form gl = blgv,g2 = wb2 where w is 

a generator of W and bl, b2 E B. Then gig2 = hu for some h E H and u E U. 

Here H = (ha(t)it E K*}. Conjugating now the element Yl by elements ha(t) 
we can get in the product C1C2 elements of the form h[h~(t),gv]u' for every 
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t. One can check [ha(t),zb] = h~(t 2) if G is of type A1, 2B2(q2), 2G2(q2) or 

[h~(t),~b] = ha(tt~ if G is of type 2A2(q2). In all cases we have in C1C2 all 

regular elements from the set {hh~(t2)} (or {hha(tt-)}). This set is dense in T if 

K is infinite. 

Cases B~, C~ with r > 2. 

We may assume that  k = 2r (because of Lemma 1). Suppose that  among 

the classes C ~ , . . . , C 2 r  there exists a class, C1 say, which has a representative 

gl = hlul,  hi E H, ul C U such that  ula~ ~ 1 where u1~1 is the corresponding 

root-factor in the decomposition of ul as a product of positive root elements. 

Then we consider 

c 1 (  c 2 6 3  ) ( c 4 c 5  ) . . . ( c 2 , _  ) 

In every product CiCi+l one can find a representative like in C1 (this follows 

from Lemma 4). Following the same procedure as in the first case we can get an 

element h E H A C1 (C2C3). . .  (C2~-2C2r-1) which is regular in G. Then we have 

from Lemma 1 that  the product of such 2r conjugacy classes contains all regular 

semisimple elements from the group H.  

Suppose that  there is no such representative in all classes considered. Then for 

every i = 1 , . . . ,  2r there exists a representative g~ C Ci of the form 

(14) g~ = hixav 

where hi E H , a  C H, 1 r x~ E X~,v  E U and among root factors of any 

decomposition of v as a product of root elements there is no non-trivial factor 

from Xa (note that  this property does not depend on the decomposition because 

(~ is a simple root). Since we have no representatives with a = a l  we may assume 

that  c~ = (~ (Lemma 3) and among factors of v in every decomposition into a 

product of positive root elements there are no factors corresponding to (~ and 

to roots of the form ek - el. Otherwise we can get a representative as in the 

previous case conjugating g, by an appropriate element from the Weyl group W1 

corresponding to the root subsystem (c~1,..., a t - l )  (see the proof of Lemma 2). 

Now we take two conjugacy classes CB, C a and take their representatives of the 

form (14). We can get in CpCq elements of the form 

(15) gpq = hpqh~ (t2)u 

for every t E K* (or t E k* in twisted cases; note that  in the case 2A2r(q2 ) we 

can even take t instead of t 2 in (15)), where hpa E H is a fixed element depending 
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on the classes Cp, Cq, and u E U. Indeed, let P be the parabolic subgroup of 

G corresponding to the root a t ,  i.e., the parabolic subgroup where the group 

L = H ( X + ~ )  is a Levi factor. Further, let V = Ru(P) be the unipotent radical. 

Take two elements gp E Cp, gq E Cq of the form (14). Then gp, gq E P and the 

images of such elements in L with respect to the natural  homomorphism P ) L 

do not belong to the center of L (this follows from (14)). Now conjugating these 

elements by appropriate elements from the group L we can obtain elements of 

the form bl(Va Vl, (varb2v2 where bl, b2 E HX~,  vl, v2 C V. Then we can apply 

the same procedure that  we used in the case r = 1. 

Since the elements v in (14) have no root factors from the groups X~k_~,, 

the elements Vl,V2 and therefore also the elements u from (15) have no such 

factors except perhaps factors from X~k_~ " which can appear  after conjugation 

by elements from L. Further, let hpqXek-e~ (a)hp~ = x~k_~(tka), where tk E K* 

is a fixed element. Since all elements h in (14) commute with elements from 

the groups X~k_~ r we have tl  = t2 . . . . .  t r -1.  (Indeed, hpq = h 'h~( to)  for 

some element h' E H which commutes with elements from subgroups X ~ _ ~  and 

to E K* is a fixed element. This follows from the procedure which gives (15) 

from (14) as described above.) Thus the elements hpqh~r(t 2) do not commute 

with the elements from X~k_~ ~ except at most two such. Let Mpq be the set of 

parameters  t 2 for such elements. We have IMpql < 2 and if t 2 ~ Mpq then the 

element hpqha~(t 2) does not commute with the elements from X~_~ . Thus, if 

t 2 ~ Mpq we can eliminate factors of u from X~k_~ ~ by conjugation of gpq by 

appropriate elements of the group X~k_~ ~. Therefore, if t 2 ~ Mpq in (15) we may 

assume ~butb -~ C U for every w E W1. 

Distribute now our conjugacy classes into pairs corresponding to each root flj 

which is conjugate to c~ (here ~) = cj or 2ej). Taking elements of the form 

(15) belonging to the product of each such pair Cp, Cq and conjugating by an 

appropriate element ~b with w E W1, we can get elements of the form hpqh~ (t2)u ' 
for every t 2 ~ Mpq. Thus in the product of 2r conjugacy classes we can get 

elements of the form 

(16) hhr ( t~) h~  ( t~) . . . h ~  ( t~)u 

where u C U, h C H is a fixed element and the parameters  t l , . . . ,  t~ run through 

K* (or k*) except maybe the cases where t~ E Mpq for some p, q. If  the H-par t  

in (16) is a regular element then the element of the form (16) is also regular and 

conjugate to its H-par t .  Further, all the H-par t s  of elements of the form (16) 

constitute a set of the form h(Hy  \ t iM) which is defined in Lemma 6. Thus we 

can apply Lemma 6. 
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Case r =2 with different root lengths. Here H = {/~, 7} is a simple root system 

(we do not identify here roots/~ and 7). 

We may assume as above k = 2r = 4. Assume that  among these four conjugacy 

classes we have two which have representatives in the form (14) with c~ = 

and two classes which have representatives in the form (14) but with c~ = 7- 

Then using the same arguments as above we can get all elements of the form 

hh~(t2)h~(t 2) for a fixed h E H and all tl,t~ e K* (or k*). Now we apply 

Lemma 6. 

Now let all four conjugacy classes have representatives in the form (14) corre- 

sponding to only one simple root, so c~ =/~. The case R = B2 -- C2 was already 

treated above. Let R = G2. Using the same arguments as above we get in the 

product of any two classes a representative in the form 

(17) hhB(t2)v 

where the element h is fixed and v E U. Further, hz(s)x~(a)h~l(s) = x~(sna) 
where n = - 1  or n = - 3  (in the twisted case 3D4(q3) we assume t E k*). Hence 

for all parameters  t 2 in (17) except possibly at most three, the element hhB(t 2) 
does not commute with elements from X~ and, therefore, for such parameters  t 2 

we may assume that  among root factors of v there are no non-trivial factors from 

X~. Hence ~b~v~ -1 C U. Put  (~ = w~(fi). Conjugating the elements of the form 

(17) by w~ and multiplying them for such conjugates, we get in the product of 

our four classes elements of the form 

(18) hhz (t2)h~ (s2)u 

where h is a fixed element, u E U and the parameters  t, s can have all possible 

values except possibly sets containing not more than six elements. Hence the 

set of H-par t s  of elements of the form (18) which we can find in the product of 

four conjugacy classes is a set of the form h(Hy \ HM) and again we can apply 

Lemma 6. 

Let G be a group of type 2F4(q2) and let fl be the root corresponding to the 

p-orbit {al .a4} and 7 to {a2, a3} (see Notation 2.3). Then 

X~ = (x~(a)la e K), X.y = (x.~(a,b)la, be  g).  

Further, h~(s)x~(a, b)h~l(s) = x~(s-la, s- l -2eb) ,  h.y(s)x~(a)h;l(s) = x~(s-la) 
(this follows from the definition of root subgroups, [Stl, w It  is easy to check 

s -1-2e ~ 1 if s r 1 - -  recall that  282 = 1 (see [Stl, w [C1, Ch. 13]). Assume 

that  all four classes contain elements in the form (14). Then in the same way as 
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above, we can get in the product  of any two conjugacy classes elements of the 

form hh#(t2)u where h C H is a fixed element, t C K*,t ~ 1, u E U and among 

root  factors of u there are no non-trivial elements from X~. Pu t  6 = w~(fl). 
Since charK = 2 we have K .2 = K* and therefore we can find in the product  

of our four classes all elements of the form hh#(t)ha(s)u where h E H is a fixed 

element, t, s E K*, t r 1, s r 1, u C U. Now we can apply Lemma 6. The case 

when all four classes have representatives of the form (14) but  with ~ instead of 

fl is handled in the same way. 

Now consider the case when 3 classes (say C1, C2, Ca) have representatives in 

the form (14) only for a = fl and one class (say C4) has such a representative 

only for c~ = 3,. We can find in C1C2 representatives of the form 

(19) h# (tot 2) h~ ( So)U 

where t0, s0 are fixed, u E U and t runs through K* (or k*). Also we have a 

representative from C4 in the form 

(20) h# (t')h~(s')x~u' 

where t t, s t are fixed, 1 ~ x~ C X~ and the element u t C U has no factors of the 

form x E, x y .  

We can find a value of the parameter  t in (19) satisfying the following 

conditions: 

1) h E (tot2)h~ (so) does not commute  with all non-trivial elements of the group 

2) hE(tttot 2) does not commute  with all non-trivial elements of the group X~ 

where w is a positive root  which is or thogonal  to % 

Condit ion 1) implies tha t  in (19) we can get u wi thout  non-trivial  factors from 

X~ (by conjugation by an appropriate  x-~). Then (as in Lemma 5) one can see 

tha t  for every fixed d c K* there exists s C K* such tha t  hE(tttot2)hv(ds 2) is 

a regular element of G. But  the elements of this type can be obtained as above 

by mult iplying elements which are conjugate to (19) and (20) by appropriate  

elements from the group (X=L~/. Now we have a regular element in H M CIC2C4. 
Thus applying Lemma 1 we have our statement.  

CASE F4: 

We can take representatives of classes C 1 , . . . ,  Cs in the form (14). Moreover, 

we may assume that  at least four classes, C1, C2, Ca, C4 say, have the same a in 

(14), namely, a = a l  or a = oz 4 (recall tha t  {a l ,  a2, Oz3, O~4} is the simple root  

system in the nota t ion of Bourbaki) .  Indeed, we may have as a a long or a short 
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simple root and can always change it for the neighbour of the same length in the 

Dynkin diagram. Let G1 be the Chevalley subgroup of G generated by the root 

subsystem R1 = (0/1, 0/2, 0/3) if a = 0/1, or R1 = (a2, 0/3, 0/4) if a = 0/4. Then G1 
is a group of type B3 or C3. If 0 /=  a4 we renumber roots in the opposite order. 

Thus we will assume a = a l .  Since in representatives of C1, C2, C3, C4 which 

are in the form (14) we have a non-trivial factor xa for the same 0/ = 0/1, the 

same arguments as in the first case show that the product C1C2C3Ca contains 

elements of the form hlhv where hi C H is a fixed element depending on the 

classes C1, C2, C3, C4, v c U, h E H1 = H N G1 and hlh is a regular element 

of HG1. Moreover, for every regular element of HG1 of the form hlh (where 

h C H1) we can find in this product an element of the form hlhv for some 

v C U. (Indeed, in the first case we used the fact that  all roots have the same 

length only to get representatives in the form (14) with a non-trivial root factor 

corresponding to the root at the beginning of the Dynkin diagram and to have 

the condition of Lemma 7 which in fact also holds for B3 and C3.) 

Further, in the products C5C6 and CTCs we can find representatives in the 

form (14) with 0 / =  0/4 (Lemma 4). Put  7 = 0/4 (recall that  after renumbering 

we assume that  the root system R1 is generated by 0/1,0/2, 0/3). Using the same 

arguments as in the case r = 1 we can find in the product C5C6C7Cs elements 

of the form h2hr(t2)u where h2 C H is a fixed element depending on classes 

C5, C6, C7, Cs, u E U and the parameter  t runs through K* (or k*). 

Let M r be the set of positive roots in R which are orthogonal to 7. Put  

/~1 -~" {h C Hi[ f~(h) ~ fl(hl-1),/~(h) ~/3(h~-lh21)for allfl E R + 

and 5(h) r 1 for all 5 E Mr}. 

Let H r = {hr(t)it E K*(or t E k*)}. T h e n H  = HIH r. Thus, K .2 C (f(Ui) 

(or k .2 C 5(H1)) for every 5 C M r. Hence, if K is a finite field then the s e t / t l  is 

obtained from the group H1 by the exclusion of 2 [R+ ]+]Mr ] subsets and each such 

set has no more than 2(IHII/IK*I) (or 2([Ul]/[k*[)) elements. If K is an infinite 

field then the s e t / ~ 1  is obtained from H1 by the exclusion of 2]R + ] + ]Mr] subsets 

contained in proper closed subsets of the torus corresponding to H1. Using the 

definition of a big field it is easy to check tha t /41  r 0 and, moreover, in the case 

of an infinite field the set/~1 is dense in the torus 

{h, 1 (tl)h~(t2)h~(t3)itl, t2, t3 E K*}. 

Now fix h C / t l .  The definition of/41 implies that  the element hlh is regular 

in HG1. Thus hlhv C CIC2C3C4 for some v E U. 
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Put  

[-I~, h = {h.r(t2)lt �9 K*(or t �9 k*),~(h~(t2)) 7~ ~(h-~1h21h-1)for every~ �9 R+}. 

If f i e  My (i.e., fi is orthogonal to 3'), then the condition /~(hv(t2))(= 1) r 

fl(h~lh2th -1) holds for every t because of the definition of the element h E/~1. 

If r ~ M~ then K*2(or k .2) C /~(H~). Thus in this case we exclude from the 

set of parameters t 2 at most two elements to get the condition ~(hv(t2)) r 
~(h71h~lh-1). Since Ik*] > 4[R+I (recall that our field is big) we have /~%h r 

0. Moreover, in the case of an infinite field the set /~%h is dense in the torus 

{h~(t)lt e K*}. 

Let t E K*(or t C k*) be an element such that h~(t 2) C [Lr,h. We know that  

we can find an element of the form hlhv c C1C2C3C4 where h E /~1, v �9 U, 

and an element h2h~(t2)u �9 C5C6C7Cs such that h~(t 2) �9 [I~,h for some u �9 

U. According to the definition of /t~,h the element hlh2hh~(t 2) is a regular 

element of G. Since we can find an element in C1C2CaCaCsC6CTCs of the form 

hlh2hh~(t2)u ~ for some u ~ �9 U, we can also get in this product the regular 

element hth2hh~(t 2) (conjugating by an appropriate element of the group U). 

If K is an infinite field the definitions imply that the set of elements of the form 

hi h2hh~ (t 2) is dense in {hlh2h~ (tl)h~ (t2)h~ a ( t3)h~ (t4)ltl, t2, ta, t4 �9 N*} = 

{h~,(tl)h~(t2)h~(ta)h~(t4)]t~,t2,ta, t4 �9 K*}. Thus, in this case we have a 

dense subset of semisimple regular elements in CIC2C3C4CaC6CTCs �9 
Thus the proof in case F4 is complete. 

Theorem 3 is now proved. | 

5. C o v e r i n g  n u m b e r s  for  Cheva l l ey  g rou p s  over  inf in i te  fields 

THEOREM 4: Let G be a Chevalley group over an infinite field K. Then 

~n(a) <_ ec~(a) <_ Sl(R). 

Moreover, every non-central element of G is contained in the product of any 41 (R) 

non-central conjugacy classes of G. 

Proof: We may assume that G is simply connected. Consider G as the group 

G(K) where G is the corresponding simple group which is split over K. Moreover, 

we may assume B _< /), H <_ /:/, N <_ N where /), H,  N are the corresponding 

subgroups of G(K).  We have G(K) = B N B .  
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Put  X -- /3~bo/~ where ~bo E N is an element corresponding to the longest 

element in the Weyl group. Then X is an open subset of G(K) .  By Corollary 

1, a product of any l(R) non-central conjugacy classes of the group G = G(K)  

is dense in G(K) .  Hence one can find an element g E G in such a product 

which also belongs to X. Thus, g = b~l~bob~2 for some b~l, b~2 E /~. On the other 

hand, g belongs to some Bruhat  cell in the group G, so g = bl(vb2 for some 

bl, b2, E B, ~b E N. But bl(vb2 E B(voB and, since different Bruhat cells have 

trivial intersections, we have w -- To. Thus in a product of any l(R) non-central 

conjugacy classes we can find an element from the big Bruhat cell B(voB. 

Now our statement follows from 

PROPOSITION 4: Let G be a Chevalley group over a big field K.  Further, let 

B w oB  be the big Bruhat cell (i.e., wo is the element of  the group W of maximal 

length). I f  C1, C2, C3, C4 are any four conjugacy classes of G such that C, n 

BwoB ~ @ for i = 1, 2, 3, 4 then 

c \ z(G) c c lc2c3c4 .  

Proof: We need the following lemma. 

LEMMA 8: Let S be the image of the homomorphism 

O:H >H 

where O(h) -- wo(h)h -1. Assume K is a big fiel ~. Then for every h E H there 

exists an element s E S such that sh is a regular element. 

Proof: Let G be an untwisted Chevalley g.oup. Let a be a positive root. Then 

/~ = To(a)  is a negative root. Moreover,/~ has the same length as a. It  implies 

(21) a(h~(t-1)h~(t))  = t -~ 

where n = 1, 2, 3, or 4. From (21) we have 

(22) K c c g * .  

Therefore a(S)  ~ K e r a  for every root 4. 

Suppose K is an infinite field. We may consider the map 0: T > T which is 

defined as above, where T is the maximal torus of the corresponding algebraic 

group such that  H = T(K) .  Let S = 0(T). The inclusions (22) imply 

S h = h S \  U Kerc~ 
aER+ 
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is a Zariski open subset of hS. Since H = T(K) is dense in T ([Bo], Ch. 18) the 

set S = O(H) is dense in S. Hence hS is dense in hS and therefore we can find 

such a point in the open subset Sh of hS. This element satisfies the required 

condition of the lemma. 

Now consider the case when K is a finite field and G is an untwisted Chevalley 

group. 

Obviously, 

IhSr~Keral << IS A Kercq 

for every h E H and every root a.  Thus we have from (22) 

(23) IhS NKera[ <_ - -  

and (23) in its turn implies 

(24) I U (hSNKera)l -< - -  
c~6R+ 

nlSl 
IK*J 

nlSIIR+I 
Jg*l 

Thus if IK*I > 4[R+I ~ n]R § then we have a regular element in hS. 
Let now G be a finite twisted group. This case differs from the untwisted case 

in that  for every root a E R + we possibly have to consider not one homomor- 

phism a: H ~ K* as in the untwisted case but, two or three homomorphisms 

c~i: H ~ K* or a~: H ~ k* w h e r e i  = 1 or 1,2 or 1,2,3. Such homomor- 

phisms are induced by the conjugation with H of the corresponding one, two or 

three parameter  root subgroup X~ ([C1], [Stl]). Moreover, instead of (22) we 

will have 

k *n c a d S )  c K* 

(except for the cases of Suzuki and Ree groups where we have the same as in 

(22)). This can be easily checked using formulas for conjugations of root sub- 

groups by H ([Stl]). Now exclude from our consideration the groups of type 

2G2 and 3D 4. Omitt ing the first type means that  we have only two parame- 

ter root subgroups. Hence we can simply put in the previous inequality 2IR+I 

instead of IR+I. Omitting the second type of excluded groups means that  we 

have ([k* t + 1) 2 = IK1 (again except for the cases of Suzuki and Ree groups). 

Thus, if IKI > (41RI + 1) 2 then [k*I > 4 . 2 I R + [  = 4IRI and we have the re- 

quired inequality as above for all finite twisted groups except groups of type 

2G2 and aD4. Now let G be a group of the type 2G2(q2). Then II = {~/} 

and h~(t)x~(a,b,c)h~t(s) = x~(t2-a~176 tc) ([Stl], w Further, let 

7i: S ---+ K* be the corresponding maps (here i = 1,2,3). Since w0 = - 1  
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here we have S = H 2. Using the fact tha t  4 does not divide IK*I ([C1], 13.7) we 

get K .2 C %(S) for every i and therefore, if [K[ > 2 �9 3 + 1, we have a regular 

element of the form sh. Let G be a group of type 3D4(q3). Here we have only 

one parameter  root  subgroups. Thus if [k*[ > 4[R+[ = 24 we have our regular 

element of the form hs. Thus we have such an element if [K[ > (24 + 1) 3. II 

Now we can easily get the s ta tement  of the Proposit ion.  Indeed, take represen- 

tatives x l  = Ulhl(Vo E C1, x2 = zboh2u2 where hi,  h2 E H and Ul, u2 E U. Hence 

XlX2 = hu where h = hl(v~h2 E H and u = h - l u l h u 2  C U. Let s = wo(t) t  -1,  

t E H be the element given by Lemma 8 such that  sh is a regular element of G. 

Pu t  x~ = tx2t  -1 = (Vo((volt~bot-1)h2(tu2t -1)  = (vosh2u' where u '  E U (note, 

tha t  wo(t) = ~botzbo 1 and since zbo 2 E H we have Zbotzbo I = zboltzbo). Thus we 

have x -- xlx~2 = shy C C1C2 for some v E U. Since sh is a regular element 

from H,  the element x is conjugate to sh. In the same way we can get a regular 

element from H in C3C4. Now the result follows from ([EG]). II 

6. Covering numbers for groups o f  r e s t r i c t e d  r a n k  

THEOREM 5: Let  G be a Chevalley group over a big fidd. Then 

ecn(G) < 4I(R)IW[. 

Prooi~ Note tha t  among  subproducts  of any [ W [ non-central  conjugacy 

classes we meet an element from B. Indeed, (b2(bl~vlb2)b~l)(b11(bl~2b2)b1) = 

b2blZblzb2b2bl and in a product  of any [ W [ elements from the group W there is 

some non-empty  subproduct  equal to the identity. Moreover, we can ensure tha t  

we get a non-central  element from B. Indeed, if (blzb)(~b-lb2) is in the centre of 

G then we consider the element (bl~b)h~b-lb2h -1 for an appropriate  h C H.  Thus 

by Theorem 2, in a subproduct  of a product  of l (R)  I W I non-central  conjugacy 

classes one can find a regular element from H and therefore in a subproduct  of a 

product  of 4I(R) I W ] non-central  conjugacy classes one can find every element 

of G. | 

COROLLARY 2: There exists  a constant  e = e(r) depending on the natural num-  

ber r such that  the ex tended covering numbers  o f  all Chevalley groups of  rank 

< r are less than e. 
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7. The linearity of extended covering numbers for Chevalley groups. 

General case 

The purpose of this section is to prove the following 

THEOREM 6: There exists a positive integer d such tha t  ecn(G) < d rank(G) 

for every Chevalley group. 

Moreover , / f rank(G)  > 8 then ecn(G) <_ 288(rank(G) + 4). 

ESTIMATES FOR EXTENDED COVERING NUMBERS OF S L n ( K ) .  

Here we follow the general terminology of Chevalley groups for the group 

S L n ( K )  with the natural  identification of H with the group of diagonal ma- 

trices, B with the group of upper  t r iangular  matrices and N with the group of 

monomial  matrices. Some of the intermediate results here are formulated for 

general Chevalley groups. 

PROPOSITION 5: I f  n > 5, then ecn(SLn(K) )  <_ 6n + 8 i f  n is odd and 

ecn(SL,~(K)) < 6n + 24 i f  n is even. 

In the following lemmas, the term "Coxeter element" is taken to mean an 

element of the Weyl group which is a product  of all simple reflections w~ 1 . . . .  , w ~  

of a fixed simple root  system which are taken in any order. Note tha t  in this 

definition an element which is conjugate to a Coxeter element need not be a 

Coxeter element in general. 

LEMMA 9: Let G be a Chevalley group or G = GL~(K)  and let g = (vu be an 

element where w E W is a Coxeter element and u E U. Then for every Coxeter 

element w' there exists a preimage (v' of w' and an element u' E U such that the 

element g' -- (v'u' is conjugate to g. 

Proof: For every Coxeter element w there exists a sequence of simple roots 

fll -- a ,~ , . . . , /~k  = c~,k (possibly not all distinct) such tha t  all elements in the 

~ ' ,  w2 w ~  wl  w ~  1 ~ sequence Wl = w~,ww = , . . . , w k  = W/3kWk_~W are Coxeter 

elements and wk is the product  of simple reflections in the s tandard  order (one can 

check this using the Dynkin  diagrams).  Thus we may assume tha t  w'  = w~ww~ 1 

for some simple root  (~. 

Let u~ be a root  factor of u corresponding to c~ in some decomposi t ion u = uav 

where the element v E U has no root  factors corresponding to a.  I f  us  = 1, then 

~b~u~b~ 1 E U and therefore the element ~b~g~b~ 1 has the same form as g, so is a 

product  of a preimage of a Coxeter element and an element from the group U. 

Suppose u~ r 1. If/~ = w(a)  > 0, then u~ = ~bu~w -1 E U and the element 

u~l  guz = u~l(vu~vu~ = u ~ l ~ u ~ - l ~ v u ~  = (uvu~ 
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is a p roduc t  of a p re image  ~b of the  Coxeter  e lement  w and an e lement  of the  

group U which does not  have a non- t r iv ia l  factor  from the roo t  group X~ (note 

t ha t  /~ ~ c~ because  w is a Coxeter  element) .  Hence we re tu rn  to the  previous  

case. 

Let  w(a )  < 0. Assume w- l ( (~)  < 0. Then  w -- w~wl  for some wl which has 

length  r - 1 ([C2], [Stl]) .  Note  t ha t  in the  case r = 1 there  is no th ing  to prove. 

We m a y  assume r > 1 and therefore Wl ~ 1. Since wl is a p roduc t  of r -  1 

different basic reflections we have wl (a)  ~ a and  therefore wl  = w2w~ for some 

w2 which has length  r - 2 ([C2], [Stl]) .  Thus w = w~w2w~. But  in a reduced 

expression of w2 there  are only r - 2 s imple  reflections. Hence w belongs to a 

subgroup  of W genera ted  by r - 1 s imple reflections and  cannot  be a Coxeter  

element.  This  is a contradic t ion .  Thus 7 = w-l(c~)  > 0. We have now an 

element  
= = 

which is a p roduc t  of a p re image  w of the  Coxeter  e lement  w and an e lement  

from the  group U which has no root  factors from X~ and we are again  in the  

case considered first. | 

LEMMA I0:  Let  G = G L n ( K )  or SL,~(K)  and let C C G be a conjugacy class 

o f  regular elements. Then C intersects all Bruhat  cells B w B  where w is any 

element conjugate to a Coxeter element. 

Proo[: Let  Wr = W and  let Wr -1  be the  subgroup  of Wr genera ted  by 

w a 2 , . . . , w ~ . .  Then  we have the following decompos i t ion  into double  cosets, 

Wr = Wr-1  [2 W r _ l w a l W r _ l .  Since w is conjugate  to a Coxeter  e lement  i t  is an 

(r  + 1)-cycle as an e lement  of the  group Sr+l = Wr. Thus, w E W r - l w a l W r - 1  

and  therefore w is conjugate  by an e lement  of the  group W ~ - I  to an e lement  

of the  form wlwa~, where wl  C W~- I .  Then  wl mus t  be an r -cycle  and it is 

also conjuga te  by an e lement  of the  group W~-2 = ( w ~ a , . . . , w ~ r )  to an ele- 

ment  of  the  form w 2 w ~ ,  where w2 C W~_2. Since the  e lements  of W~_2 com- 

mute  wi th  w ~ ,  we have an e lement  of the  form w 2 w a 2 w ~ ,  where w2 C W~-2 

which is conjugate  to w by an e lement  of W r _ l .  Ac t ing  in the  same way we get  

w = a w a w ~ r _  ~ "'" w~ la  -1 for some a E W,._I. Now we consider  a ra t iona l  form 

of the  class C; we can take  a representa t ive  g C C of the  form g = w~u where 

w' = w ~ w ~ _ ~ . . . w ~  and u = U l U 2 . . . u  r for ~t i E Xo~l+O~2+,..+o/ �9 N o w  let 

P = B W ~ _ I B  be the parabo l ic  subgroup  cor responding  to  the  set {c~2, . . . ,  a~}. 

Then  u E R~(P )  and every pre image  & of the  e lement  a E W~- I  is in a Levi 

subgroup  of P .  Thus,  &g&-i  = ~b(&u&-l) E ~bB. | 
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LEMMA 11: Let G be a Chevalley group of type other  than 2 A2n(q 2) or a Suzuki-  

Ree group. Let g E B w B  where w E W is a Coxeter element. Then g is regular. 

Proof." See [St2], Remark  8.8. | 

LEMMA 12: Let g E S L y ( K )  be a non-central element. Suppose tha t  g is in 

rational form: 

g = (vu = ~vl(v2... (vmu 

where ~bl , . . . ,  ~b,~ are monomial elements /rom N corresponding to elements 

w l , . . . , w m  C W such tha t  

W ]  ~ -  W o ~ l  W ~ 2  " " " W C ~ k l  ~ W 2 ~ -  W C ~ k 1 4 _ l  W C ~ k l + 2  " " " W c l k 2  ~ �9 �9 . ~ W ? ) ~  ~ W O ~ k r a _ l _ k l  " " " W(3~krn  

and w l , . . . , w i n  correspond to cycles of  lengths kl + 1 >_ (k~ - kl + 1) > . . -  > 

(km - kin-1 + 1), and u = u l u 2 "  .urn E U where u~ is an element belonging to 

the subgroup generated by the X.r, ~ C (~k~_1+1,.. . ,  ~k,). 

Let w ~ be an element of W which is conjugate to w. Then there exist an 

element u'  c U and a preimage (v' C N of  w' such that g is conjugate in S L y ( K )  

to w'u'. 

Proof." The element w'  is the product  of independent cycles w~. . .  w "  which 

are conjugate respectively to w l , . . . ,  win. Let El ,  E 2 , . . . ,  Em be disjoint subsets 

of [1,n] corresponding to those cycles. We may assume U E~ = [1, n] (we can 

always add trivial cycles with [E~ I = 1). 

Consider the set 

~ = { l i l ,  1~2,..., l~(k,-k,_l+l)}. 

Assume I~1 < li2 " " < l~(k,-k, 1+1). Pu t  n~ : k , - k ~ _ l  + 1 . Let G~ ~- S L ~  (K)  be 

the group generated by the root  subgroups of the form X=~a where 6 is a positive 

root  of the root  system generated by eta, - el~, �9 �9 el,(k~-k~_l-~) -- el,(k,_k,_l). The 

assumption implies tha t  a positive root  6 with respect to this new root  system is 

also positive with respect to our fixed root  system for the whole group S L y ( K ) .  

Let V be the linear space of the natural  representat ion of G = S L n ( K )  with 

a fixed basis labelled by el . . . .  , e~ and let V~ be the subspace spanned by the 

subsets of this basis corresponding to e,, s E E~. Then  we have 

V = V l |  

Now we can construct  elements ~ C GL(V~) of the form w i'''u~" which have the 

same rational form as ~ u i ,  where the element w~ ~ is the cycle 

(l~11~2)(1~21~3)... (l~(k_k,_l)l~(k_k~_l+l)) 
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and  u~' is a p roduc t  of  posi t ive  root  e lements  ( t ransvect ions)  of  SL,~, (K) .  As we 

see above,  such e lements  are also posi t ive  root  e lements  in the group S L n ( K )  with  

respect  to our fixed s imple roo t  sys tem.  By L e m m a  9 we can get by conjuga t ion  

in GL(Vn, )  an e lement  g~ of the  form ~b~ul, for some element  ul, which is also a 

p roduc t  of posi t ive  roo t  e lements  of SLn , .  Now we have the e lement  

�9 ! - /  . I  / I , / = , j j l U /  
g' = g~ e g~ e . .. e g "  = wlw~ . . . w , ~ u l u 2  ..urn 

which is conjugate  in G L ~ ( K )  to g. Hence a a g l a - l a  -1 = g for some (r E 

S L n ( K ) , a  = diag(t,  1 , . . . , 1 ) .  Now the e lement  ag~a -1 belongs to the  same 

B r u h a t  cell as g / a n d  is conjugate  to g in SL,~(K) .  I 

LEMMA 13: Let  g E S L n ( K )  be as in the previous lemma.  A s s u m e  kl  > 1. 

Then g is conjugate to an e]ement (v'u I where u I E U and l(w')  = l(w) + 1 (here 

l(x)  is the length o f  x in W ) .  

Proof: We can wri te  u = vx~l ,  where x~l E X~I and the e lement  v E U has no 

factors from X a , .  

We may  assume x~ 1 ~ 1. Indeed,  otherwise pu t  fl = w ( a l )  and consider  the  

e lement  x~gx~  1 = ~b( (v - lxz (v )vx~  1 = ( v x ~ v x ~  1 for some 1 r x B E XZ. Since 

kl  > 1 we have 0 < f l r  a l .  Thus  we have the form required (since a l  is a s imple 

root  and  in terchanging the cor responding  componen t  wi th  o thers  we can get the  

non- t r iv ia l  a l - f a c t o r  to be on the r ight) .  

There  exists  x_~ 1 E X_~I  such t ha t  xa~x_~ 1 = (v~,~x~ for some pre image  

~ba I E N of a basic reflection w ~  E W and some x I E X ~ .  Conjuga t ing  g by Ot 1 
X--1 _ ~ ,  we get  an e lement  

(25) -1  �9 �9 1 x - 1  . . . .  1 v .  , X ot lWVWotlXt?t l  = __o~lWWotlWOtl ICtlXOL1 �9 

Since v has no factors from the group X~I ,  we have w ~ v w ~ ,  E U. Fur ther ,  

the  root  fl = w - l ( - a l )  is posi t ive  and different from a l .  This  follows from the 

cons t ruc t ion  of  w and  the a s sumpt ion  kl > 1. Thus  3' = w ~  (fl) > 0. Now we 

have 

(26) X ~ I 1  W~bot 1 ~- W~)Or 1 X,~ 

for some x~ E X.  r. Compar ing  (25) and (26) we get an e lement  conjugate  to  g 

in the  form (mbalu I for some u I E U. F rom the defini t ion of w we get  l(wwc,1) = 

l(w) + 1. I 
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LEMMA 14: Let  g' = (v'u' E S L n ( K )  where (v' C N ,  u' C U. Suppose that  w'  is 

a product  o f  basic reflections w,~, where each such reflection occurs not more than 

once and w'  contains an independent  cycle o f  length > 2. Then  g' is conjugate 

to an e lement  g which has the form as in L e m m a  12 with kl > 1. 

Proof: Let w' ' ' ' where ' = w l w 2 . . . w  m w~ are independent cycles which are 

products  of basic reflections, where such reflections occur at  most  once in the 

decomposit ions of all the w~. This means that  g '  is contained in some s tandard  

parabolic subgroup of SL,~(K).  Moreover, since w' contains a cycle of length > 2 

a Levi factor of this parabolic subgroup contains a simple component  of rank > 1 

and the natural  projection on this component  of the element g '  gives a regular 

element (Lemma 11). This implies tha t  the minimal polynomial  of g '  has degree 

not less than the length of the corresponding cycle, which implies our s tatement.  
| 

LEMMA 15: Let  gl = ~ J l u l , g 2  = / i ~ 2 u 2  E S L n ( K ) , n  >_ 6, be two rational forms 

where wl = ( 1 2 ) ( 3 4 ) . . . ( ( 2 s l -  1)2sl) ,w2 = ( 1 2 ) ( 3 4 ) . . . ( ( 2 s 2 -  1)2s2) ,s l  _< s2 

and let C1, C2 be the conjugacy classes in S L n ( K )  o f  gl,g2. Then there exists 

an element  in C1C2 in the form as in L e m m a  12 and with kl > 1. 

Proof: Let sl < s2 or 2s2 < n. There exists an element g~ of the form u'@' E 

S L n ( K )  which is conjugate to gl and where w'  = (23) (45) . . .  (2s12s~ + 1). Then 

the element g~g2 is conjugate to an element of the form @u, where w is a product  

of basic reflections with each such reflection occurring at most  once and having 

a cycle of length > 2. Thus we can apply the previous lemma. 

Now let 2sl = 2s2 = n. Then  

(27) 

( (23)(45)- . .  (n l ) ) ( (12 ) (34) . . .  ((n - 1)n)) = (1357. . .  (n - 1))(n(n - 2 ) . . . 4 2 ) .  

Since gl, g2 are in rational form, we can write 

(28) gl ~ -  ' ~ b l X e l - - e 2 X e 3 - - e 4  " " " Xen_ 1 --en, g2 = (v2Yel-~Y~3-~ " " " Y~-~-~ ,  

where x~, y~ C X~. Now instead of gl we take an element g~ which is conjugate 

to gl and has the form 

(29) 

! 
' = (23) (45) . . .  ((n - 2)(n - 1))(nl)  and x~ E X~. Now take a different where w 1 

ordering of the basis e l , . . . ,  en of the vector space of the natural  representation 
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of SL,~(K). We put vectors with odd indices in the first sl = n/2 positions, 

el, c3, ~5,-.., and then the vectors with even indices in the next n/2 positions, 

~2, e4,..-. Note that the elements y~ in (28) are represented by upper triangular 
/ matrices with respect to the new basis. The same is true for the elements xa 

in (29). Thus the element g~g2 is conjugate to an element which is represented 

with respect to the new basis by a matrix of the form ~bu, where w is a product 

of two independent cycles corresponding to first and second n/2 elements of the 

new basis (see (27)) and u is an upper triangular matrix. Note that these cycles 

are products of basic reflections corresponding to the new order of the basis and 

each such reflection may occur at most once. Now we can apply the previous 

lemma. | 

We now prove Proposition 5. 

Let C1, C2 be noncentral conjugacy classes of SL,~(K). We can take repre- 

sentatives of these classes in the form gl -- ul(vl,g2 = zb:u2 where Zbl, ~b2 E N, 

ul, u2 E U. Moreover, we may take wl, w2 to be elements which are conjugate to 

the permutations which appear in the rational forms of corresponding elements. 

Thus by Lemma 12 we may assume in the positions of wl, w2 every pair from 

given conjugacy classes of W. Therefore we may assume that w = wlw2 ~ 1 
and for appropriate choice of wl, w2 we can get in this product every element in 

the conjugacy class of w. Now in the product of any two noncentral conjugacy 

classes we can get a representative in the form zbu where 1 ~ w E W and u E U. 

Moreover, if we fix the conjugacy class Q~ of w in W we can get a representative 

of our product of the form ~b~u ~ for every element w ~ E Q~. 

Now let n = 2l + 1 > 5. Then every n-cycle is in the alternating group A,~. 

Since ecn(A~) = [n/2] + 1 ([D]), multiplying 1 + 1 appropriate elements from 

given nontrivial conjugacy classes of An we can get every element of An. Now 

take any 12(l + 1) + 2 non-central conjugacy classes of SLn(K). We say that the 

class is odd (resp. even) if the rational form of a representative has the form zbu 

for w ~ A,~ (resp. w E A,~). Then we distribute this set into pairs in which both 

classes are odd or even. Only two classes may have no such pair. If the product 

of the other 12(l + 1) classes gives the whole of SLn(K), the multiplication by 

these two classes does not change the result. Thus we need to consider only 

6(l + 1) pairs. In the product of such a pair we can find a representative ~bu 

where w E An, w ~ 1. From the above it follows that in the product of any 

l + 1 noncentral conjugacy classes obtained in the product of such pairs we can 

find an element of the form ~bu where w E W is a Coxeter element of W and 

u E U. Such an element is regular (Lemma 11). Further, every noncentral 
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element of SLn(K) is contained in the product of any three regular conjugacy 

classes ([Levi]). Therefore every element of SLn(K) is contained in the product 

of any six regular conjugacy classes. Hence ecn(Sin(K)) < 12(l+ 1)+2 = 6n§  

Now let n -- 2I _> 6. Consider 12(l + 1) § 12 non-central conjugacy classes. 

Distribute these classes into pairs as above. We divide these pairs into two sets: 

in the first we take 6(l + 1) and in the second 6, where there can be one pair 

which consists of odd and even elements. For every pair from the first set we fix 

an even nontrivial class contained in the product of this pair. In the product of 

any (l + 1) such classes we can get elements of the form ~bu for every w E An 
(since ecn(A,~) = l + 1 by [D]). Now take any pair from the second set. There are 

two possibilities. The first possibility is that  we have a representative in at least 

one class which is odd or which satisfies the condition of Lemma 13. In the latter 

case Lemma 13 implies that  we can find a representative of the class of the form 

~bu where I(w) is odd. In the second case rational forms of representatives of both  

classes have forms ~bu,where w is a product of an even number of independent 

transpositions. Now use Lemmas 13 and 15, and get in the product of our two 

conjugacy classes of SLn(K) an odd class. Now we fix an element of the form 

~bu where l(w) is odd which is contained in one of the pairs of the second class 

or in the product of such a pair. Now every element of the group Sn \ An can 

be written in the form ww for some w C An. Thus, if we consider a product of 

(l + 1) pairs from the first set and a pair from the second set, we can find in this 

product or in a subproduct (with one class removed) an element of the form ~bu, 

where w is a Coxeter element of W, which is a regular element in SLn(K) by 

Lemma 11. 

Now every non-central element can be found in a subproduct of 3(l + 1) pairs 

from the first set and 3 pairs from the second ([Levi]), and therefore in the 

subproduct of 6(l+1) pairs from the first set and 6 pairs from the second set. Note 

that  we take the subproduct of a fixed subset of our 12(l+1)+12 classes. Thus the 

product of this subset gives us the whole group and therefore the whole product 

also coincides with SLn(K). Hence ecn(SLn(K)) <_ 12(l + 1) + 12 = 6n + 24. 

GENERAL COXETER CELLS. 

Detinition: Let R be a root system (possibly reducible) and II be its fixed simple 

root system. Further, let R ~ C R be a root subsystem (possibly empty) generated 

by a simple root system IY C II. Then every Coxeter element of W(R ~) (i.e., a 

product of all basic reflections w~, a C 1-[I in any order, or, the identity if R ~ = O) 

will be called a general Coxeter element of the Weyl group W(R). 
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Definition: Let G = B N B  be a group with (B, N)-pair .  The cell B(oB will be 

called a general Coxeter cell if w is a general Coxeter element. 

PROPOSITION 6: Let G be a finite crystallographic Chevalley group (untwisted 

or twisted). Then every non-central eonjugaey cIass of G has a non-empty inter- 

section with a general Coxeter cell of the Bruhat decomposition of G. 

For the purpose of the proof  of Proposi t ion 6 we need to recall some notions 

and to introduce some notation.  

1. Recall tha t  R is the irreducible root  system corresponding to G ([St1], [C1]) 

generated by a simple root  system FI. The  group G is generated by root  subgroups 

X ~ , a  E R. Further,  G = B N B ,  B = HU, N / H  ~ W = W(R) ,rank(G)  = 

rank(R). 

2. If  the s ta tement  is true for all simply connected Chevalley groups it will be 

also true for all groups. Thus we will assume tha t  G is simply connected. 

3. We can exclude the cases of Suzuki-Ree groups. Indeed, since G is crystal- 

lographic, it is not  of type 2F4. The other cases are groups of rank one. There is 

nothing to prove for such groups since both  Bruha t  cells are general Coxeter. 

4. Thus we may assume G = mXl(qm ) where m = 1 ,2 ,3  and Xl = A l , . . . , G 2 .  

Pu t  K = Fqm, k = Fq. There exists a simple and simply connected algebraic 

group G defined and split (if m = 1) or quasi-split (if m > 1) over k such tha t  

G = G(k) = ~ ( ~ ) F  where F is a Frobenius map ([C2]). Further, there exists a 

maximal  torus T of the group G which is defined over k and stable under F and 

such tha t  H = T(k). Then we have an irreducible root  sys t em/~  with respect to 

T such tha t  R = I~/F (here we take a root  from R to correspond to an F-orb i t  

in/~) .  Also, Yi = H/F  for the simple root  system. 

5. Now let X C II, Gx = (X~[ c~ e (X)) .  Then there exists a subset 

c l:I such that  X = f ( /F .  Further,  there exists a simply connected semisimple 

algebraic group G- 2 which is defined and split or quasi-split over the field k such 

that a x  = 

6. Cross-sectzon of regular conjugacy classes for d R. In [St2] it is shown tha t  

for a semisimple algebraic group defined over a field L there exists a cross-section 

of conjugacy classes of regular elements. Moreover, if such a group is simply 

connected and quasi-split over L, then this cross-section can be defined over L 

under the condition tha t  this group has no simple component  of type 2A2s. If  

such a component  does exist, we can construct  over L a closed subset of our 

group which intersects every semisimple regular conjugacy class in exactly one 

point. Thus in our case we have a closed subset N 2 of the group d R  defined 

over the field k satisfying the following condition: 
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(,) Every regular semisimple conjugacy class of G 2 intersects N 2 in exactly 

one point. 

7. Description of N R. We follow [St2, 9.8, 9.11]. If Gx does not contain any 

components of type 2A2s then 

(30) = l -I  

Here the X~ are root subgroups defined over K.  However, the whole product is 

F-stable and can be defined over k with an appropriate choice of preimages ~bz 

of basic reflections. Moreover, we can get such a set NR for every order in the 

product (30) and every such product satisfies (,). (Note that compared to [St2] 

we change the position of w~, XZ, but that  is not essential.) We can rewrite (30) 

in the form 

where tb 2 is an element belonging to Ox and V~ is a closed subgroup o f / f 2  

defined over k. Indeed, we can move tbfl in (30) to the left side by interchanging 

it with various terms X~,. Then )(~ in (30) gets replaced by the root subgroup 

P(e(/~), where 0(/3) = w(/3) for w which is the product of all reflections corre- 
sponding to roots which appear in (30) to the right of/3. Such a root 0(/3) is 

positive (see [St2]). Further, 

(32) @2 = H @~ 
sEX 

for appropriate choice of preimages tb~. This follows from the definition of w 2. 

Now from (31) and (32) one can see that every F-stable element from the set 

NR is in a general Coxeter cell of G. 

Now we consider the case when the group Gx contains a component of type 

2A2s. This occurs only if the whole group G is of the same type and in this 

case there exists at most one such component in Gx. Thus we have X = Y t_J Z 

(respectively,)( = Y U Z) where the group Gy has no components of type 2A2 s 

and Gz is the group 2A2s(q2 ). We define N?  in the same way as above. Let 

2 = {71, . . . ,  72s} be the numbering where F(%) = 72s+1-,. Put  5 = % + %+1. 
Let/~a = T~)(z be a Borel subgroup of (X• Put  

(33) N 2 = (~baXa U ~baXlX2/~z) H tb%X~, 
~ s , s + l  
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where xl  C X.r~ , x2 C X.y~+ 1 are some fixed non-trivial elements. Put  

(34 )  = 

Then the set N)~ satisfies condition (*), is F-stable and can be defined over k with 

an appropriate choice of preimages of elements from the Weyl group and elements 

xl ,  x2. The definitions (33) and (34) also imply that  the F-stable elements from 

N)? are in general Coxeter cells of the Bruhat decomposition of G (by the same 

argument as above). 

8. The group HGx.  Let h E H = T(k). Then the set hNfc is a closed subset 

of G 2 .  Moreover, if N 2  is defined over k then hN 2 is also defined over k. 

LEMMA 16: Let hg C HGx where g C Gx, and let C be the conjugacy class of 

hg in the group TG R. Suppose that hg is a semisimple regular element ofTG R. 

Then C intersects the set hN R just in one point. 

Proof: We can write h = thl for some t which lies in the centre of T G ~  and 

for some hi ~ G.~. Note that  these two elements need not be defined over k. 

However, the closed subset h lN  R satisfies the condition (*) (but need not be 

defined over k). This follows from the constructions of N 2  (the multiplication 

by hi changes only the preimages of the same reflections in (29), (33)). Further, 

the multiplication by the central element of a semisimple regular element changes 

neither the semisimplicity nor the regularity. Hence the conjugacy class of hlg 

intersects the set hlNy c in just one point. The same is true for C and t h i n  R = 

hN R . | 

LEMMA 17: Every regular semisimple element of the group HGx is conjugate 

to one from a general Coxeter cell of the Bruhat decomposition of G. 

Proo~ Let a E HGx be a regular semisimple element of the group TGfc and 

let C be the conjugacy class of this element in this group. The previous lemma 

implies that  C N hN R consists of one point for some h C H.  Since C and hN 2 

are both defined over k the element in the intersection is in HGx.  Since G- R is 

simply connected, the elements in HGx which are conjugate in TG,~ are also 

conjugate in HGx ([C2, Proposition 3.7.3]. But the elements from the set N 2 

which are also in Gx lie in a general Coxeter cell, as we have seen above in 7. 

The same is true for the elements from hNfc. | 

Proof of Proposition 6: The groups of the form HGx also possess a (B, N)-pair  

and therefore we can formulate the statement as in the Proposition for groups of 
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this form. We prove the statement for groups of the form H G x  (it is clear that 

G is also such a group, with X = II). Let C be a non-central conjugacy class of 

H G x .  If C is a semisimple regular class then we have our statement from Lemma 

17. If not, then there exists an element g E C which belongs to a proper standard 

parabolic subgroup P of H G x .  This follows from the fact that p = char k divides 

[CHax (g)[ for such an element g, as we see from the properties of the Frobenius 

map and well known facts about centralisers of semisimple elements, and from 

([C2, Proposition 6.4.5]). Let L be the Levi factor of P of the form H G y  where 

Y C X and let r P ~ L be the natural homomorphism. Assume that P is a 

minimal parabolic subgroup containing elements from C. Then r is a regular 

semisimple element of the group L. Thus g = su, where s is a semisimple regular 

element of L and u E Ru(P).  Again by Lemma 17, a s a  -1 is in a general Coxeter 

cell for some a E L. Since aRn(P)a  -1 = Ru(P) then aga -1 is in the same cell. 

The Proposition is now proved. | 

PROOF OF THE THEOREM. Now we are able to prove the Theorem. We may 

restrict our attention to the case of finite fields, because of Theorem 3. Also we 

need to consider only groups of rank > 8, and hence only classical groups, other 

than type Ar already considered above. Thus G here is a finite Chevalley group 

of type Br(q), C,.(q), Dr(q), 2An(q2), 2Dn(q2). 

Let R1 = ( a l , . . . ,  a,._l} (with the standard nmnbering of simple roots) ,  G1 = 

(X~ala E R1) (note that G1 TM S L r ( K ) / Z  for some Z <_ Z(G)),  W1 = W(R1), 

N1 is the corresponding subgroup of G1, H1 = H N G1. Further, let P = BN1B 

be the corresponding parabolic subgroup, L = HG1 its Levi factor, V = R~(P) 

and r P ---+ L be the natural homomorphism. 

LEMMA 18: Let C1, C2 be two non-central conjugacy classes of G. Then at least 

one of the sets C1 M P, C2 N P and C1C2 M P is not empty and is not contained 

in the center of the group G. 

Proof'. We can choose gl = Ul~bl E C1, g2 = ~)2u2 E C2 where Ul, u2 E U and 

wl, w2 are general Coxeter elements (Proposition 6). If both classes have trivial 

intersection with P,  then among basic reflection factors of Wl, w2 there is w~ r. 

Moreover, we may assume Wl = W'lW~ r, w2 = w~w'2 (by the same argument 

as in the proof of Lemma 9). Hence g = ui l (glg2)ul  E P. Suppose g E Z(G). 

Then gig2 E Z(G). This implies '~bl~b2 E Z(G), Ul = u~ 1. Since wl is a general 

Coxeter element, there exists a positive root a such that a # Wl(a) > 0. Now 

take a root element x~ r 1 and consider g[ = x2lg lxa  = x2lul((Vlx~(vi1)(Vl 

instead of 91. Now g~g2 E P \ Z(G). | 
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LEMMA 19: Let C1,C2 be two non-centra] conjugacy classes of G such that 

(61 N P) ,  (62 M P)  are non-empty sets. The,~ r r Z(L) for some element 

g E (C1 U C2 t3 C1C2) N P (recall that r is the natural surjection P > L). 

Proof: Let g E P a n d  r -- h E Z(L). Then h E H a n d g  = hu for some 

u E V. According to Lemma 2, we may assume that  the root factor u ~  of u 

is not trivial. Also, by Lemma 4 we may assume [K[ _ 3 or [k] _< 3: otherwise 

we can find in CIC2 an element of the form g = hu (also in P)  such that  u 

has non-trivial a-factor for any chosen simple root a; taking a E { a l , . . . ,  a t - l }  

we can make sure that  r ~ Z(L).  Similarly, the case Dr(q) can be excluded 

because of Lemma 3. Put  a = a r  = er, or 2e r and ~ = er + or-1 (we take the 

standard numbering for root systems Br and Cr). 

Now we assume that  for every element g from the sets C1 v} P, C2 M P we have 

r E Z(L).  Thus, representatives gl,g2 of the sets C1 M P, C2 N P have the 

form described above. Below, using this form we show that  either a conjugate 

g e P of gl,g2 has the property r ~ Z(L) (and this is a contradiction with 

our assumption) or a product g E P of conjugates g2, g2 has the property r 

z ( n ) .  
Let G be of type Cr(q) or 2A2r_1(q2). 

We can take representatives gl, g2 of C1, C2 in the form 

/ V  gl = h lx~xzv l ,  g2 =- h2xa 2 

where hi,  h2 E Z(L) and the elements vl, v2 C V have no factors from the groups 

X~, X~ and x~, x ' ,  xz ~ 1. (This can be obtained by conjugation by appropriate 

elements from the group X ~ _ , ;  see [Stl], Lemma 33.) 

We may assume hi, h2 E Z(G). Indeed, otherwise the element hi (or h2) 

does not commute with elements of the group X~ r because it commutes with all 

X~,, i < r, but hi  r Z(G) (or h2 r Z(G)). Thus conjugating gl (or g2) by an 

appropriate element from the groups X~, X ~ _  1 we can get an element in one of 

these conjugacy classes of the same form as gl but with x~ = 1. Now we have 

g'  = ~b~g,~b~ 1 e P and r r Z(L). 
! 

If  x~' = x~-I then g = ~b~(glg2)~b; 1 E P and r r Z(L). If x~ • x ;  1 then 

]K[ = 3 (or [k[ = 3) and x"  = xa. Conjugating the elements gl, g2 by appropriate 

elements ~'1, T2 E (X-L~) we can get elements 

I �9 l t gl = hly~W~Vl, g2 = h2(v~y~v~ 

where y~ C X~,v'l, v'2 C V. Note that  in both expressions ~ba is the same 
/ 

preimage of wa because of the assumption xa = xa. Since (~ba) ~ = h a ( - 1 )  
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we have g' = g'lg'2 = h'v' where h' e H, v' E V and [h',x~._~] # 1. Thus 

x~_ lg'x~_~ is an appropriate element. 

Let G be of type B~(q) with q ~ 2 "~ (the case q = 2 m is included in C,.(q)). 
Let g = hu be a representative of one of these classes. Assume h ~ Z(G); 

then [h, x~] ~ 1. Now conjugating g by appropriate elements from X< we get 

an element g' of the form hu' where all root factors of u' of the form x< are 

trivial. If u' has a factor of the form x<+~, then tb<g'*b/, 1 is an appropriate 

element. If all such factors are trivial then u' = 1 and g' = h. If h does not 

commute with all long root elements we can return to the previous case. We 

assume now that hi C C1, h2 E 6"2 where the elements h,, h2 C H commute with 

all long root elements. By conjugation we can get elements in C2, C1 of the form 

x~h2x~_~+,~x~_,+2~, hlX~, ~. where x~_1+2~ 7~ 1. If g is the product of 

such elements then @ ~ g t b ~  is an appropriate element from the product CIC2. 
Suppose h E Z(G). Then conjugating the element g by an appropriate element 

x~_~ C X~_~ we can get an element of the form g' = hu', where u' C V has 

non-trivial factor u'~ and trivial factor u ' ~ _ , + ~  (here a~- i  + a~ = e~-l) in 

some decomposition into product of root elements. We may also assume that u' 

has no non-trivial factors from the group X~+~_~. (Otherwise ~_~g*b~-l_~ is 

an appropriate element.) Then conjugating g' by some non-trivial x _ ( ~ _ , + ~ )  E 

X_(~_~+~)  we get an element g" such that r r Z(L) (this follows from the 

Chevalley commutator formula). 

Let G be of the type 2Dr+l(q2). 

Put 7 = e~_~. We can take representatives g~ C C1, g2 E C2 in the form 

gl = hlx~(sl)xz(ml)ulx~(tl), g2 = h2x~(t2)x~(s2)x~(m2)u2 

where hi,h2 C Z(L) and the elements ul,u2 E V have no root factors corre- 

sponding to c~, fl, ~ and tl, t2 r 0. If hi or h2 ~ Z(G) then the proof is the same 

as in the case Br(q). Assume h> h2 E Z(G). We can always make ml or m2 = 0. 

Thus, if t2 = - t l  we have the same situation as in the case Cr(q). If ]k] = 2 

we can always get t2 = - - t l  = t l  by conjugation of gl by an appropriate element 

ha(t). 
Now IK*I = 8. Thus - 1  E K .2. We may assume tl ~t t2K .2 (otherwise we can 

make tl = - t2  by conjugation of gl by an appropriate element ha(t)). We also 

assume m l r  0, rn2 = 0 (this can be done by conjugation with elements from 

the group Xa~_l). Let sl = 0. Then w~gl,b~ -1 is an appropriate element. Thus 

we assume sl r 0. Let s2 = 0. Then x-~g2x-~ is an appropriate element for 

some x_. r E X_. r. Thus we assume s2 r 0. The same arguments as above give 
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us the assumption s l r  s2 K*2. Now we have tl ~ t2K .2, sl ~ s2K .2. Since we 

can change x~(t~) to xv(5=tl) by conjugating g~ by ~b~_~ we can also add the 

assumption tl  r s2K .2. Again by an appropriate  conjugation we can get t l  -- Sl 

a n d  t2 = 82. Conjugat ing g2 by an appropriate  element from Xa~_~ we can get 

s2 = 0. Then  conjugating g2 by x_v(1)  we get an element which has a non-trivial 

root  factor corresponding to a~_l .  Thus we get the required element�9 

Let G be 2A2r(q2). 

Recall tha t  here R = Br ([C1]), ~ = a~ = ~ and X ~  = (x~ (a, b)) is a two 

parameter  subgroup�9 Let ~ba be a preimage of wa C W; then [~ba, ha(t)] = 

ha(tt ~ (recall tha t  0 is a field au tomorphism corresponding to the Frobenius 

map F) .  Thus, if Ikl = 3 we can find an element t C K* such tha t  tt ~ = - 1  and 

obtain [~ba, ha(t)] = h a ( - 1 ) .  Now using the same representation of elements in 

C1, C2 as in the proof  of Lemma 4 we can obtain an element g = hu G C1C2 
such tha t  [h, xa~_~] ~ 1. Now xa~_lgx~_l is an element as required. Thus we 

can exclude the case Ik] = 3 and we assume [k[ = 2. Now take representatives of 

gl G C1, g2 C 6 2  as  in the previous case 

= t ' ) ,  = 

where in the first expression t l r  0 or t~ ~ 0 and t2 ~ 0 or t~ r 0 in the second 

one. We may also assume that  m l  ~ 0 and m2 = 0, or ml  -- 0 and m2 ~ 0. If  

t l  = t2 = 0 then t~ = t~ = 1 and then (vaglg2(v~ 1 is an appropriate  element. We 

assume tl  ~ 0. Let t2 r 0. Then conjugating g2 by an appropriate  element from 

the group HXa we can get xa(t2, if2) = h2x~l(tl, t~l)h21. Also, we may assume 

ml  ~ 0, m2 = 0 (by conjugating with xa~_,). Thus ~ba(glg2) is an appropria te  

element. Now we may assume t2 = 0, t~ r 0. Also, we can make Sl = 0. If  in 

' = 0 .  If  addit ion s~ r 0, we are in the si tuation described above�9 Let Sl = s 1 
�9 . I m l r  0 then wvglw~ 1 is an appropriate  element. Assume sl -- Sl = ml  = 0. 

Then x_~glx~ 1 is an appropriate  element for some x_t~ E X_~.  | 

LEMMA 20: / f r a n k ( G )  > 8, then the action of G1 on each factor Vi/V~+I of the 
central series of V is augmentative. 

Proof'. This follows from the Chevalley commuta to r  formula. | 

Now we can prove our estimate. We use the same trick with subproducts  as we 

used in the case SLn (K).  Assume tha t  we have 2 . 2 -  (6r + 24). 3 . 2 . 2  noncentral  

conjugacy clases; if we identify a subset of this set the product  of which covers 

the whole group, then the product  of all classes also covers the whole group. By 
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Lemma 18 the subproduct of any two classes contains a noncentral element from 

P.  Then by Lemma 19 the subproduct of two classes which have noncentral 

intersection with P has a nontrivial Levi component. From the estimates for 

SL~ (K),  Lemma 20 and Proposition 3 (with k = 2 because every finite Chevalley 

group is generated by two elements) we see that  the subproduct of 2-2(6r+24).3.2 

classes contains the whole group G1V and therefore the group U. But every 

element of G is conjugate to an element from U - U  (lEG]). Thus the product of 

48(6r + 24) noncentral conjugacy classes covers the whole group G. 
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