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ABSTRACT

This paper is concerned with products of conjugacy classes in Chevalley
groups. We prove that in any quasisimple Chevalley group G proper or
twisted, over any field, the extended covering number is bounded above
linearly in terms of the rank of G, that is, for some constant e, for any
Chevalley group G, the product of any e - rank(G) non-central classes
covers all of G. We give estimates for the constant e in different cases.

1. Introduction

This paper is concerned with certain properties of products of conjugacy classes
in groups. In particular, we consider the covering number and extended covering
number in various classes of groups.
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Definition: Let G be a group. The covering number cn(G) is the smallest integer
m such that C™ = G for every conjugacy class C of G which is not contained in
any proper normal subgroup of G. The eztended covering number ecn(G) is the
smallest integer e such that the product C;Cs - - - Ce = G whenever Cy,C, ..., C,
are conjugacy classes of G not contained in any proper normal subgroup of G.
Here the product X1 X, is {z12; | 1 € X1,72 € X5} for X, CG.

Recent considerations of these concepts start with the collection of papers
[AH] of Arad, Herzog and their coworkers. There are references to nmumerous
older papers in [AH].

What is known about these numbers for specific groups? Dvir [D] proved that
for the alternating group A,, n > 5, cn(A,) = [n/2], ecn(A,) = [n/2]+1. A. Lev
[Lev2] proved that cn(PSL,(K)) = n under the condition | K |[> 4 and n > 2.
Zisser [Z] calculated the covering numbers of the sporadic groups. That seems
to be all that is currently known about the precise values of cn(G), ecn(G) for
natural classes of groups. The calculations in these cases mentioned are difficult.
Even estimates of these numbers are difficult to obtain. In [AH] it is shown
that for every finite simple group ecn(G) < k(k — 1)/2, where k is a number of
conjugacy classes. The natural classes of groups which could be studied from this
point of view are different classes of linear groups, not necessarily finite. In [G]
products of conjugacy classes are studied in the case of simple algebraic groups
over algebraically closed fields of characteristic zero. In particular, it is proved
there that for such a group cn(G) < 4rank(G), ecn(G) < 4rank(G) + 2. In
[EGH] it is proved that there exists a constant ¢ such that en(G) < ¢- rank(G)
for every quasisimple Chevalley group G (here rank(G) is the Lie rank of G).
The general constant which can be obtained from the proof given there is rather
large. It seems that a more careful consideration should give ¢ < 2, or at least
¢ < 10. However, to prove even the existence of such a constant is not easy.
We also mention a related recent result of Lawther and Liebeck [LL] who proved
that every conjugacy class C of a finite simple group G of Lie type has diameter
less than 8rank(G) + 5 (here the diameter of a conjugacy class C of a group G
is the smallest integer d such that G = |J,,<,(C U C~")™). Even more recently,
Liebeck and Shalev [LiSh] proved very strong asymptotic results concerning the
diameters of simple groups.

In this paper we consider the extended covering numbers for the Chevalley
groups.

THEOREM: There is a constant e such that for any Chevallley group G = G(F)
(over any field F'), we have the inequality ecn(G) < e - rank(G).
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The estimate for the constant e which can be obtained from our proof is rather
large in general. In particular, we obtain ecn(G) < 288(r + 4) for G of rank r
greater than 8. Over an algebraically closed field, the bound can be sharpened:
here ecn(G) < 4r for groups of any r, and there are stronger results also in the
case of other infinite fields.

The above results lead us to pose the following question:

QUESTION: Is there a general constant ¢ such that for every perfect linear group
G < GL,(K) over any field K for which the number ecn(G) exists, the inequality
ecn(G) < ¢+ n holds?

We are confident that the answer is positive for a number of natural classes of
groups G. As a first step, one should look at classes with additional restrictions,
and we intend to investigate this further. Natural classes to consider are finite
groups and connected algebraic groups. The class of Chevalley groups plays an
intermediate role between the two, and our results provide evidence that the
answer indeed may be positive.

The lifting procedure which we use to compare “covering” in a parabolic
subgroup and its Levi factor allows us in addition to extend the class of
groups which satisfy our bound on extended covering numbers by adding some
Chevalley groups over complete local rings. We hope that further work on this
will enable us to estimate covering numbers for finite perfect groups through
covering numbers of their simple factors.

We now outline the contents of the paper. In section 2 we survey the notation
used. Section 3 is concerned with lifting information concerning covering numbers
from quotient groups, which is then used later. In section 4 we obtain results
for Chevalley groups over algebraically closed fields; in fact, more generally, we
investigate here products of conjugacy classes which meet a Borel subgroup,
under mild assumptions on the field size. In section 5 we obtain the bound for
the extended covering numbers in the case where the defining field is infinite. The
next short section is concerned with Chevalley groups of small rank. Finally, in
section 7 we prove the general bound, by dealing with classical groups. We first
analyze the special linear groups and establish the bound ecn(SL,(K)) < 6n+24,
and then use that to cover all the classical groups. In the process, we obtain the
result that in a crystallographic Chevalley group, every non-central conjugacy
class has a non-empty intersection with a general Coxeter cell of the Bruhat
decomposition — a result which is of independent interest.

We mention one consequence of our results. Given a finite group G, the ex-
tended generating number egen(G) is the least number k such that in any k
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conjugacy classes we can choose elements, one in each class, generating G. As
a consequence of our results, using the.theorem [GK] of Guralnick and Kantor,
we obtain an upper bound on the extended generating numbers in the finite
Chevalley groups, which is linear in the rank of G.

2. Notation and terminology

2.1. Here R is an irreducible root system generated by a simple root system
{o1,...,a.}. We also write R = (ay,...,qa,). Further, Rt, R~ are the sets of
positive and negative roots respectively, W(R) is the Weyl group for R. Our
notation for root systems is that of Bourbaki [B, Tables I-X].

2.2.  Let G be a simple algebraic group corresponding to a root system R which
is defined and split over a field K. Let o € R. We use the notation of Steinberg
[St1] for unipotent and semisimple root elements z,(t), t € K, ho(t), t € K*.
Further, X, = (z,(t)| t € K*) is the corresponding root subgroup of G(K).
The subgroup of G(K) generated by all root subgroups is the Chevalley group
over the field K corresponding to G, and is also denoted by G (if it leads to no
confusion). In Section 3 we also consider the case when K is a ring.

2.3.  There are other types of groups which are also called Chevalley groups (or
twisted Chevalley groups). Namely, in the case where K is a finite field and G is
simply connected we consider groups of the form G(K)¥ where F is a Frobenius
map (see [C1, C2]). We also denote such a group by G. The automorphism F' can
be expressed in the form F' = 6p, where 8 is the corresponding field automorphism
and p is the corresponding graph automorphism. The field K¢ of #-invariants
we denote by k, except in the cases of Suzuki and Ree groups 2B3(¢?), 2G2(q?),
2Fy(q%). For these groups we put k = K. Chevalley groups (untwisted or finite
twisted) are quasisimple except in a few cases ([St1], [C1]). For a twisted group
there exists also the root system which is obtained from R by gluing roots. We
will denote this system by R (when we speak only of a corresponding twisted
group we shall omit the superscript ¥). The notation for root systems in the
twisted cases corresponds to [C1] (note, however, that [C1] assigns root system
B, for the groups of the type 24,(¢?) instead of BC,). The notation for root
subgroups (which can be one, two, or three parameter subgroups) is the same as
for the untwisted case. The rank(G) is the number of simple roots in R (or in
RF).
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2.4. Let G be a Chevalley group (untwisted or twisted) over a field K corre-
sponding to a root system R. Then

H = (hy(t)la € R, t € K*(or,t € k*, if p(a) = a)),
U= (Xsla€eR", U =(X,Ja€R”), B=HU B~ =HU".

The subgroup N (see [St1], [C1]) contains the group H as a normal subgroup
and N/H =2 W. By w we denote any preimage of an element w € W in the
group N.

An element g € G is called regular if it is regular as an element of the corre-
sponding simple algebraic group.

2.5. Let u € U. Then the element u can be written as a product of elements
of the form z, € X4, a > 0. This presentation depends on the order in which
we take the product. If we fix the order of roots, such a presentation is defined
uniquely ([St1], Lemma 17). Moreover, if « is a simple root and u, = z, is the
corresponding root factor of u in some decomposition of u into a product of root
elements, then the condition u, = 1 does not depend on the decomposition (i.e.,
it holds or does not hold for every possible decomposition). This follows from the
Chevalley commutator formula. The Chevalley commutator formula also implies
the following fact. If o« is a simple root and if u, = 1 for some v € U, then
gug~t € U for every g € (X1q)-

2.6. We use below the notion of big field. This is designed to guarantee the
existence of sufficiently many regular elements in H satisfying certain desir-
able conditions. We say that a Chevalley group G is over a big field K if
| K |> (4(] R | 4+2r)+1)? for every case except R = G4, in which case | K |> 73°.
(The right sides of inequalities could be decreased for specific families; in partic-
ular, the exponents 2, 3 could be deleted in the untwisted cases.)

2.7. The general notation and terminology below are more or less standard.
When we consider algebraic groups the bar over a set means the Zariski closure.
The bar over a field means the algebraic closure.

3. Lifting from factor groups

Definition 1: Let G be a group, A be a ring and let M be an A[G]-module.
Further, let I{G] be the augmentation ideal of the group ring A[G]. We say that
M is an augmentative A[{G]-module if I[GIM = M.

The following result is an extension of Lemma 3 of [EGH].
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PROPOSITION 1: Let F = {f1,..., fx) be a group and let A be a commutative
ring, let A[F] be a group ring and I[F) its augmentation ideal. Further, let M
be an A[F]-module. Then the image of the homomorphism

>MoM---0M — M
of A-modules given by the formula
O((my,...,mg)) = (1~ fi)mi + fr(l = f2)ma + -+ fifo- - fro1(1 = fi)my
contains I[F|M. Thus, if M is an augmentative F-module then ® is surjective.

Proof: Put m; =0,...,my,_1 =0,m;11 =0,...,mg = 0. From the definition
of & we get

1) fifer o fiir(1= fi)M C Im@
for every ¢ > 1 and
2) (1- f1))M C Imd.

The inclusion (2) implies the inclusion (1 f;)Im® C Im®, which in turn implies
F1Im®) C Im®. Further, (1— f7)M = (fi~1)f7 M € (fi—-1)M = (1- fi)M
and therefore (1— f{ ) Im® C Im®. Thus f(Im®) C Im®. Assume now that

(3) fE{(Imd) c Im®

for every ¢ < j. Then (3) also holds for ¢ = j. Indeed, it is enough to multiply
both sides of the inclusion (1) (with i = j) by fj'_l1 fj__l2 -+ f! and then use the
assumption to get

(4) (1 - fj)M C Im®,

which gives us (3) for ¢ = j. Now (3) and (4) imply that Im® is an A[F]-
submodule of the A[F]-module M and the factor module M/Im® is trivial as an
F-module (i.e., all elements of this module are F-invariants). Hence I[F|M C
Im® as claimed. If M is an augmentative A[F]-module then ® is surjective.
|

The following identity is easily checked by direct computation:

(zi1zT V) (Z2yezy ) - - (mrywzy Dy tyilty vl =

(%) [z1, ] (w]ze, ¥2)y7 ) - (W12 Vo1 [Tk, YRSy 93 YT D)

(Here z1, ...,z and y1, ..., yx are elements of a group.)
From Proposition 1 and (*) we get:
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PRrROPOSITION 2: Let G be a group satisfying the following conditions:
1. There exists a sequence of normal subgroups G > N = Ny > Ny--- > N;---
(infinite or finite) satisfying the following conditions.
a.
G = lim G/N;.
—

b. Every factor N,/N,,1 is a module over a commutative ring A;.

c. [N,N,] C Ny for every i > 0.

2. There exist elements ¢, ...,gx € G satisfying the following condition. Let
91,---,9k be the images of the elements g1, ..., gy in the factor group G/N and
let T = (g1,...,9k). Then N,/N, 1 is an augmentative A;[['|-module for every 1.

Further, let X1, Xs C G be any two subsets such that X, = X3 = G/N where
X1, X, are the images in the factor group G/N of the sets Xy, X,.

Then

N cC (C1Cy---Cy) Xy,
G = (0102 e Ck)Xle.
Proof: We show that every element n € N can be written in the form

(5) n = (niging nagang ' - nigrng gy 95ty gr
for some ny,...,n; € N.

Consider the Ag[I']-module N/N;. According to Proposition 1 and () we have
the equality (5) modulo Ny. Assume

(6) n = (niging 'nagany' - nkgrng ey 9ty 97 H(modN;)

for some ¢ and some ny,...,n, € N. We denote the right side of (6) by r; and
put m, = nr, !, Hence (6) implies m; € N,. Further, the action of the element
njgjn]_l on N,/N,;1 which is induced by conjugation is the same as the action
of g,, by condition 1.c. Thus we can use (x) and Proposition 1, putting in (*) the
elements njgjn]_l instead of the elements y, and the elements I, € N, instead of
the z,. Therefore we can write m; in the form

my =(linaginy U7 M) (lanagang M3 Y - - (knkging G
(7) X (mkgy g ) (e-1giting L) - (g g ) (modNiya)
for some Iy, ...,lx € N,. Now if we put [;n; in instead of n;, we get the equality

(6) modulo N,41. This follows from (6), (7) and the definition of m,. Thus,
correcting the elements n; at every step ¢ by multiplying them by elements from
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N, ;1 we construct elements satisfying (5), since G is a direct limit of the G/N;
(by condition 1.a).

Now put gg = gk_lg,:_l1 .- -gl_l. From the definition of X3 we have go = fono
where fo € X; and ng € N. Then (5) implies

NcC (0102 s C’k)Xan.

Since Nngy! = N we have our first assertion. From the definition of X5 we have
that every ¢ € G can be written in the form g = nf where f € X, and n € N.
Therefore the second assertion follows from the first. |

PROPOSITION 3: Let G, N be as in the previous Proposition and assume that
conditions 1 and 2 hold. Then

ecn(G) < 3k(ecn(G/N)), cn(G) < 3k(en(G/N)).

Proof: Let m = ecn{G/N) (we assume that m exists — otherwise there is
nothing to prove) and let Cy,Cy,. .., Csky be conjugacy classes of G, where no
C; is contained in any proper normal subgroup of G. Let C, be the image of C, in
G/N. Since the product of any m classes C; equals the whole group G/N, we can
write each element from the set {g1,...,g5} (recall, that these elements satisfy
condition 2 as a product of m representatives of conjugacy classes C,). Therefore
we can find a system of representatives f, € C, in any km conjugacy classes, say,
Ci,...,Crm such that (g1,...,9%) < (f1,..-, fem). Now condition 2 will hold if
we consider instead of elements gi,...,gx the elements fi,..., fxm. Moreover,
the sets X1 = Crm+1Crm+2 -+ Cogm and Xg = Cogm41C2xm+2 - - - Cakm satisfy
the conditions of Proposition 2. Thus we have G = C1Cs - - - C3gy, and therefore
the first inequality holds. The second is proved in the same way. |

One can apply the previous results to a more concrete situation. We announce
a theorem, which can be proved using the techniques developed here; a proof will
appear in a later paper.

THEOREM 1: Let G be a Chevalley group (untwisted), over a complete local ring
A with a maximal ideal M and residue field K = A/M. Further, let G be the
corresponding Chevalley group over the field K. Assume that the group G is
quasisimple. Then

ecn(G) < 6(ecn(@)), cn(Q) < 6(cn(Q)).
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4. Covering and extended covering numbers for simple algebraic
groups over algebraically closed fields

This section contains a generalisation and extension of the results [G] to the cases
of non-zero characteristic.

Let G be a simple algebraic group defined over a field K and let en(G), ecin(G)
be topological covering and extended covering numbers of G, i.e.,

@i(G) = min{k| C* = G}, em(Q)=min{m|CiCs---Cm = G}

for all non-central conjugacy classes C,Cy, . .., Cp, (where X is the Zariski closure
of X). A product of conjugacy classes is a constructible subset of G and therefore
contains a Zariski open subset of its closure. Since the product of any two open
subsets of G coincides with G ([Bo], I, 1, Prop. 1.3), we have

1 1
gcn(G) <en(G) < en(G), Eecn(G) < een(G) < ecn(G).
Thus estimates for topological covering numbers give estimates for covering
numbers. In the case where charK=0 it was proved in [G] that

oni(G) < 2r, em(G)<2r+1.

(Here r = rank(G).) The proof of such inequalities in [G] partly depends on
the characteristic of the ground field K being 0 because the theorem of Morozov—
Jacobson was used (which also holds in the case of characteristic p # 0 with the
exception of G5 in characteristic 3, but only for unipotent elements of order p).
Here we give a stronger result which holds in every characteristic.

Let R be the root system corresponding to G. Put [(R) = r + 1 if all roots in
R have the same length and [(R) = 2r if R contains roots of different length.

THEOREM 2: For K algebraically closed, we have
a(G) < &em(G) < U(R).

Moreover, if G is a group of type A,,B,,C, then the inequalities above are
equalities.

The proof of this Theorem can be obtained from a more general fact formulated
in the next Theorem. However, a more direct proof of Theorem 2 can be given;
namely, using the fact that the semisimple part in the Jordan decomposition of
an element g lies in the closure of the conjugacy class of g, and the fact that
the closure of the conjugacy class of any non-trivial unipotent element contains
a root element, one can simplify the proof below.
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THEOREM 3: Let G be a Chevalley group of rank r over a big field K and let R be
the corresponding root system. Further, let C1,...,Cy be non-central conjugacy
classes of G such that each class C; has a non-trivial intersection with a Borel
subgroup of G. If k > I(R), then the product C1C3---C} contains a regular
semisimple element of G. If K is an infinite field, this product contains a subset
of H which is dense in the maximal torus T. Moreover, if all roots in the root
system R have the same length, then for every big field K and r > 1 this product
contains all semisimple regular elements of G.

Theorem 2 now follows easily from Theorem 3. Indeed, for any algebraic group
G the group of points G(K) is a Chevalley group over K. Since C;C;---Cy
contains a dense subset of T(K) then T(K) C C:iCs---Ck. Hence the set
C.C, - Cy, contains all semisimple elements from the group G(K) and there-

fore C1Cy - - - Cx = G(K) and we have the first assertion of Theorem 2. Consider
the case when G is of type A,, By, C,. Let g € G(K) be a long root element if
R = A,,C, and let g = he, (i)h, (i) h (i) if R = B,, where i = /-1 (we
may assume that char K # 2 for the case R = B,). Further, let C be the con-
jugacy class of g in the group G(K). If we consider a natural form of G, i.e.,
SL, S0, Sp, we can see that C™ # G(K) if m < I(R) (every element in such C™
will always have fixed vectors in cases R = A,,C,; in case B, such an element

has two independent eigenvectors with eigenvalues 1 and +1).

We remark that the result claimed in [Kn] implies that there is equality in
Theorem 2 also in the case D,., provided that the characteristic is not 2.

From Theorem 3 we also have the following result which will be used in the
next section.

COROLLARY 1: Let G be a simple algebraic group defined over an infinite field
K. Let Cy,...,Cx be non-central conjugacy classes of G(K). If k > I(R) then
the product C,Cs - - - Cy, is Zariski dense in G.

Proof: Let ¢, € C; and let Q; be the conjugacy class of ¢, in G(K). Since K is
an infinite field and G is a simple group, the set G(K) is dense in G(K) ([Bo,
18.3). Now C, is dense in @); and hence C1Cy---C}, is dense in @102 - - - Q but
the latter product is dense in G(K). Thus C,C; - - Cy, is dense in G. (]

Now we start the proof of Theorem 3.

LEMMA 1: Let G be a Chevalley group corresponding to a root system R and let
Go < G be a Chevalley group corresponding to a subsystem of R. Let hy,hy € H
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and g € Go, and assume that hy is regular in HGy and hag ¢ Z(HG,). Let
C1,C3 be the conjugacy classes of hy, heg in HGy. Then every regular element
of HGq of the form hihah with h € H N Gy is contained in C1Cs.

Proof: Let v = hyhah be a regular element of HGy, and write v = hy,v2 = hag.
There exists an element ¢ € HGp such that oy 'o~ = vy1y~ u = vhy'h~lu
where v € Uy = U~ NGyp,u € Uy = UNGy ([EG]). Since v1,y~! are regular in
HGy, one can find elements v; € Uy ,uq € Up such that v = [v1, 1], u = [y, u1)
(see [EG]). Thus, oy 6™t = (vymoy (v~ 'ur!) and therefore v € C,Cs.
|

LeEMMA 2: Let G be a Chevalley group and let g = hu be a non-central element
of a Borel subgroup, where h € H and u € U. Then there exists an element
g = h'v' where ' € H, v € U which is conjugate to g and such that the
element v’ written as a product of positive root elements has a non-trivial factor
uy, € X, corresponding to some simple root c.

Proof: We may assume u # 1: Otherwise we can conjugate g = h ¢ Z{(G) by
an element from the group U. Further, assume that in a decomposition of u as
a product of positive root elements there are no factors corresponding to simple
roots. Then for every simple root 8 we have 'LUﬂhU]El € H and wﬂuwgl eU.
Thus conjugating g by appropriate elements of N corresponding to simple roots
we can get an appropriate element. |

LEMMA 3: Let ¢’ be the element from the previous lemma. Let 8 be a fixed
simple root. If a and B have the same length, then there exists an element
g" = n'v" with h" € H,v" € U which is conjugate to g’ and such that the
element u” written as a product of positive root elements has a non-trivial factor
ug S Xg.

Proof:  Assume first that o, 3 are neighbours in the Dynkin diagram. Let P, g
be the parabolic subgroup corresponding to the subset {c, 3} of the simple root
system, let V,, g = R, (P, p) be its unipotent radical and let G4 g be the Chevalley
subgroup of G generated by root subgroups of the root system (a, ). Assume
that the element ¢’ does not satisfy the conditions for g” (otherwise there is
nothing to prove). Hence we can write ¢’ in the form

(8) gi = hfzaxa-%—ﬂv
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where v € V, g (note that when two neighbours are of the same length they
generate a root system of type Ag). If B/ does not commute with elements
of the root group Xz then ¢” = zz(p)g’zs(—p) is an appropriate element for
every p # 0. (This follows immediately from the commutator formulas.) Let
k' commute with elements of the group X but not with elements of the group
Xat+p. Then conjugating g’ by an appropriate element of the group X415 we

! satisfies our
condition (note, that cvo™! € V, g for every 0 € Gop5). Now assume that b’
commutes with both subgroups Xg, X, 5. Then it commutes with X_g, X_,_p3
and therefore with the whole group G, g. But G, s is a factor group of SL3(K)
by a subgroup contained in the centre. This implies that oz4Taig0™! = 5 for

~1is an appropriate element.

can get £o4p = 0 in (8). Then the element ¢” = wowgg’ wﬂ'lw'

some o € Gap. Now ¢’ = og'c

Now consider the general case. Since we can make by conjugation a non-trivial
factor corresponding to the neighbour on the Dynkin diagram, we can move
along the diagram until we get to our root 3 (here we use the property of Dynkin
diagrams that any two roots of the same length can be connected by a chain
where all the edges correspond to roots of the same length). ]

LEMMA 4: Let G be a Chevalley group over a field K. Assume that |K| > 3 (or
|k| > 3 in the twisted cases) if R # G4 and |K| > 4 (or |k| > 4 in the twisted
case) if R = G9. Let C1,Cy be any two non-central conjugacy classes which
have a non-trivial intersection with a Borel subgroup. Then for every simple
root « there exists an element g = hu € C1Cy such that h € H,u € U and in an
expression of u as a product of positive root elements there is a non-trivial factor
corresponding to «.

Proof: According to Lemmas 2 and 3 we may assume that there exist represen-
tatives gy = hyuy € C1, g2 = haug € Cy where hy, hy € H, u1,us € U satisfying
the following conditions. If . is the factor corresponding to the positive root y
in a fixed decomposition of u € U as a product of positive root elements, then
one of the following possibilities holds:

1. u14 # 0,
2. Ulq = Uga =0, w18, uzg # 0,
where 3 is a neighbour of « in the Dynkin diagram and the roots «, 3 have
different lengths.
Assume that we are in case 1. Since |K| > 3 (or |k| > 3) we may assume that
hy Lisaha # u;j (otherwise, we can conjugate the element g; by an appropriate
element from H). Then g = g192 is an appropriate element.
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Now consider case 2. Let Pg be the parabolic subgroup corresponding to
the simple root subsystem {8} and let Vs be its unipotent radical. We have
U1 = V1U18, U2 = Ugv2 Where vy, vy € V3. Note, that for every 7 € H(X13) we
have 7Vg7~! = V3. Further, there exist elements 01,02 € (X44) such that

-1 ro -1 H /
orhiuigoy - = ujgng, O2housgoy ™ = wepusg

where w1, Wog are different preimages in NV of wg (this follows from the fact that
non-central conjugacy classes cannot be contained in the Borel subgroup). Now
wigwep = h € H. Moreover, conjugating ;g by an appropriate element from
the group H we can get [h,z4] # 1 (here we use the assumption of the lemma
about the field K'). Now one can see that the element z,(01g105 ") (029205 *)z !
is an appropriate element from C1Cs. |

LEMMA 5: Let G be a Chevalley group of rank r > 1 over a big field K. Let
Jj > 1, and write

X] = {h,al (.’I)l)ha2 (1,'2) cen hat]_1 (-Z'j—l)hol X1,%2,...,Tj-1 € K*(OI‘ k‘*)},

where hg is a fixed element from the group (h,, (s)| s € K*(or k*),m > j).
Suppose that there is no root in the root subsystem R; = (a1,..., ;) which
is orthogonal to each of oy, ..., a;_1.
Then the set X; contains a regular element h € H of the group HG; where
G = (Xgy| vy E (a1, .., 0p)).

Proof:  Assume G is untwisted. Let v € R;. The condition of the lemma
implies that 7 is not orthogonal to some «; with ¢ < j. Thus the image of the
group (hy, (z)|z € K*) in K* under the homomorphism « is equal to K*"* where
n =< o,y >. Note that n = £1,+2,4+3 and the last is possible only for the
root system Gy which does not satisfy the condition of the lemma. Thus

(9) K*? C y((hg, (z)|z € K*)) C K*.
Now put
Xy = {z € X;lv(z) = 1}.
Suppose that K is a finite field. Then (9) implies

21X, |
(10) [ Xjn| < ﬁ
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Therefore
2|1X,|
|K*|

|R;|

<
K|

U Xy

+
'yER]

B | = X2 < 1%

(the last inequality follows from the assumption that K is a big field for G).
Hence the set
x;=x,~ |J x4y
YERT

is not empty. The definition of X ]' implies that all its elements are regular in
HG,.

Suppose that K is an infinite field. Then we may consider the group HG; as a
subgroup of T'(K )Gj(K ) where éj is the corresponding simple algebraic group.
Then the set X, is a subset of Y;(K) where Y is an algebraically closed subset
of éj which is the translation of a (j — 1)-dimensional torus by the fixed element
ho. Unirationality of the torus and infiniteness of K imply density of X; in Y}
(see [Bo], 18.3) and hence X, has a non-empty intersection with any non-empty
open subset of ¥;. On the other hand, (9) implies that the set X, is contained
in a proper closed subset of Y; and therefore the set of regular elements of the
group Téj is open in Yj;.

Let now G be a finite twisted group. Again we can exclude the case where
the root system is G and for the same reason also the case 2Fy(g). Now instead
of root maps v: H — K* we have to consider either such maps or pairs of
maps v1,7ve: H — K™, where v € R is a root such that the corresponding root
subgroup X, is a two parameter subgroup X, = X,(u,v) and where v,,v; are
the homomorphisms induced by the action of H on the parameters of X,. For
every 7; (where ! =1 or [ = 1,2) instead of (9) we now have

k2 C yi((ha, (z)| z € K*(or,x € k*))) C K*

(recall that k = K if G is a Suzuki or a Ree group, and otherwise k¥ = K?). Since
we exclude the case Go, i.e., the type 3Dy, we have

VIK* -1
Ik*2|> | | .

2

Now using the same argument as in the untwisted case we show that the set
X, = X; \UveRj Xy, is not empty if |K*| > (2|R| + 1)2. This gives us a
semisimple regular element in the set X;. ]
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LEMMA 6: Let G be a Chevalley group of rank > 1 over a big field.

Let Y = {B1,...,8:} € R be a set of linearly independent roots and let
Hy = {hg, (t3)hg, (t3) - - - hg, (t2)| t1,t2,...,t, € K*(or k* in the twisted case)}.
Further, for every i < r fix a set M, C K*?(or k*?),|M,| < 2 (if R # G2) and
|M1] <3 (if R =G,). Put

Hy = {hg, (t%)hﬁQ(tg) e hgr(tf)l tf € M, for some 1 <i<r}.

Then for every h € H the set h(Hy ™ Hys) contains a regular element. If K is
infinite then the set h(Hy ~ Hps) is dense in T.

Proof: 'We use the same arguments as in the previous lemma. Namely, let hH}
be the subset of hHy consisting of such elements h’ which satisfy the condition
(k') = 1 for some positive root v (or v,(h’) = 1 for some 7 = 1,2 in twisted cases).
Since the roots in Y are linearly independent, K** C v(Hy) (or k** C v;(Hy))
where n = 2,4,6. If we exclude the groups with R = G5 we have n < 4 and we
get as above

|hHy| - 4|R|

Lol

Further, from the definition of hH s we have

|hHy | <

247‘|th|

hHy| <
Ml = =

Thus
|hHy| - 4(|R| + 2r)
|*| '
Now if |K| > (4(|R| + 2r) + 1)® then |k*| > 4(|R| + 2r) and therefore the set
h{(Hy ™~ Hpr) contains a regular element. Now consider the case R = G. Here

|hHy U hHy| <

(even in the twisted case D4(¢?)) we have only one parameter root subgroups.
Now we have

|hHy| < |hHy| - 6|R"\/|k*| = |hHy] - (36/|k"]),
[hHp| <6-3-7- |hHy|/|k*| = |hHy] - (36/|k").

Thus, if |K| > (36 4+ 36 + 1)3 then |k*| > 36 + 36 and we have a regular element
in h(Hy ~ HM)
The assertion about the density of h(Hy ~ H)) is obvious. |
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LEMMA 7: Assume that R is not one of By (= C3), G2, Fy or a non-crystallo-
graphic system corresponding to 2Fy. Then there exists a numbering of simple

roots o, ..., o, such that for every 1 < i < r — 1 the root system generated by
a1, ..., 041 s irreducible and does not contain a root v which is orthogonal to
all ay, ..., q.

Proof: For the cases R = A,, B.(r > 2),C.(r > 2), D,.(r > 4) we can take the
standard numbering of Bourbaki ([B], Tables I-X). In cases R = Eg, E7, Eg one
can take the numbering where roots a, ..., a,_1 generate the root system D,_;
and «, is the root of the type %(Z €,)- Note that roots of the latter type cannot
be orthogonal simultaneously to a pair of roots ¢; t ¢,. |

Now we give the proof of Theorem 3 for the case where r > 1 and all the roots
are of the same length.

We assume that the numbering of simple roots in R satisfies the conditions
of Lemma 7. Let R, be the irreducible root system generated by the subset
{a1,...,a,} of the simple root system and let G, = (X, |y € R,). Let P, be the
standard parabolic subgroup of G corresponding to R, and let V, be its unipotent
radical. Then HG, is a Levi factor of P,.

According to Lemmas 2 and 3 we can choose representatives g = hiu; €
Ci,...,gx = hguy € Cy where hy,...,hy € H,uy,...,u; € U such that in an
expression of each u, as a product of positive root elements there is a non-trivial
factor corresponding to the root ay. We can write the elements g1, g2 in the form

(11) 91 = h'ha, (P)u10yv11, 92 = B ha, (@)u20,v12

where h', h" are elements from the subgroup of H generated by elements hq, (a)
with j > 1, 1 # %14, %24, € Xay» V11,012 € V1. Further, we can find elements
o,7 € HG; such that

(12) (Gh’}},al (p)“1a10—1)(7h”h041 (q>u2027_—1) = &/hﬂhal (t)a

where t € K* (or t € k*) is any prescribed element except maybe one for which
h'h'hy, (t) € Z(HG1) (this follows from [EG| and the fact that all non-trivial
unipotent elements in G; are HG -conjugate).

From (11) and (12) we have elements h'h"hg, (t)v € C1Cs, where v € V;
and where ¢ can be any prescribed element from K* ( or k*) except maybe one
for which h'h"h,,(t) € Z(HG;). By Lemma 5 we can choose the value of the
parameter ¢ such that the element h'h"h,, (t) is a regular element in HG3 (note
that the possible exclusion of elements A'h" by, (t) € Z(HG1) from the set X,
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defined in Lemma 5 does not influence the claim because the elements excluded
cannot be regular for HG3). Put hy = h'h"hg, (t). Thus, hev € C,C5 where
hy is a regular element of HGy. Since hy € H is a regular element of the group
HG@G, there exists a unipotent element u from the group U; = G2 N U such that
uimm"l = izgfzz where U3 € V5. Indeed, the element v € V; can be written in
the form v = 9,95 where ¥; € U, and ¥4 € V5. Since ilz is a regular element of
HG,, every element of U, can be written in the form [hy?, ] for some @ € U,
(this is a simple and well-known fact — see, for instance, [EG]). Thus, we have
o7Y = [hy!, @) for some @ € Up. Hence Ghgvit™! = ho[o7!, @](Gvha~1) where
avya~' € Vu, [o7',4% € U. Moreover, the element [9;',4] lies in the next
member of the central series of the group Us, compared with the element v;.
Thus acting in this way we can eliminate the v;-part of v.

Now we have an element of the form iLZi}Q € C1Cy and g3 = hgus € C3, where
ilz is a regular element of HG3,75 € V5, hg € H,uz € U is an element which
has a non-trivial u,,-factor. Let @ be the conjugacy class of izgf)z. Note that
ﬁgf)z, g3 € P,. Moreover, the image of l~12172 in the factor group P2/Ve, & HG, is a
regular semisimple element of HG2 and the image of g3 in P»/V2 is a non-trivial
element (because the u,, -factor of ug is non-trivial). Thus we can apply Lemma
1 to the conjugacy classes of images of elements Bzﬁg, g3 in Py/V, 2 HG,. This
implies that the product QC5 contains elements of the form

(13) hohsha, (1) ey (t2)v2

where vy € V5 and where parameters t1,t take all possible values for which
the element Aghsha, (£1)ha,(t2) is regular in HG,. Lemma 5 guarantees that
among such elements one can find a regular element of the group HG3. Thus,
hsvy € QC3 C C1C2Cs where hg is a regular element of the group HG3 and
vy € Va. Since the element hg is regular in HG3 we can conjugate the element
hsvs by an appropriate element from Uz = HG3 N U (as we did above) to get an
element of the form hsis € C1CsCs, where 93 € V3. Continuing this process we
obtain in the product of r + 1 conjugacy classes all regular elements of H. The
further multiplication cannot eliminate any such element, again by Lemma, 1.

Consider now the case r = 1.

Here G is of type A1, 2A2(q?), 2B2(g?), 2Ga(q?). We take representatives of
conjugacy classes g1 € C1,92 € Cs in the form g; = bW, go = why where w is
a generator of W and b1,bs € B. Then g192 = hu for some h € H and u € U.
Here H = (ho(t)|t € K*). Conjugating now the element gy by elements h,(t)
we can get in the product C1Cy elements of the form h[h,(t), w]u’ for every
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t. One can check [ha(t),w] = hqo(t?) if G is of type A1, ?Ba(q?), 2G2(q?) or
[ha(t), @] = ho(t?) if G is of type 245(g?). In all cases we have in C;C; all
regular elements from the set {hhq(t2)} (or {hhs(tt)}). This set is dense in T if
K is infinite.

Cases B,.,C, withr > 2.

We may assume that & = 2r (because of Lemma 1). Suppose that among
the classes Ch,...,C5, there exists a class, C; say, which has a representative
g1 = hyuy, by € H, uy € U such that u14, # 1 where uy,, is the corresponding
root-factor in the decomposition of u; as a product of positive root elements.
Then we consider

Cl (0203)(0405) e (CZT—2C27'—1)C21'-

In every product C;C;1 one can find a representative like in C; (this follows
from Lemma 4). Following the same procedure as in the first case we can get an
element h € HNC,(CyC3) - - - (Cay—9C5,-—1) which is regular in G. Then we have
from Lemma 1 that the product of such 2r conjugacy classes contains all regular
semisimple elements from the group H.

Suppose that there is no such representative in all classes considered. Then for
every i = 1,...,2r there exists a representative g, € C; of the form

(14) g, = h;zqv

where h; € Hya € TI,1 # z4 € X,,v € U and among root factors of any
decomposition of v as a product of root elements there is no non-trivial factor
from X, (note that this property does not depend on the decomposition because
« is a simple root). Since we have no representatives with a = @; we may assume
that a = @, (Lemma 3) and among factors of v in every decomposition into a
product of positive root elements there are no factors corresponding to «, and
to roots of the form e; — ¢;. Otherwise we can get a representative as in the
previous case conjugating g, by an appropriate element from the Weyl group W,
corresponding to the root subsystem (ay,...,a,_1) (see the proof of Lemma 2).
Now we take two conjugacy classes Cp, C, and take their representatives of the
form (14). We can get in C,C;, elements of the form

(15) Ipg = hpgha, (tHu

for every t € K* (or t € k* in twisted cases; note that in the case 2A45,(q%) we
can even take ¢ instead of ¢ in (15)), where hy,, € H is a fixed element depending
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on the classes Cp,Cy, and u € U. Indeed, let P be the parabolic subgroup of
G corresponding to the root «,., i.e., the parabolic subgroup where the group
L = H(X1,,) is a Levi factor. Further, let V = R,(P) be the unipotent radical.
Take two elements g, € Cp, gq € Cq of the form (14). Then g,,g, € P and the
images of such elements in L with respect to the natural homomorphism P — L
do not belong to the center of L (this follows from (14)). Now conjugating these
elements by appropriate elements from the group L we can obtain elements of
the form by, v1, Wa,bave Where by,b2 € HX,,v1,v2 € V. Then we can apply
the same procedure that we used in the case r = 1.

Since the elements v in (14) have no root factors from the groups X, _,,
the elements v1,v2 and therefore also the elements u from (15) have no such
factors except perhaps factors from X, _. which can appear after conjugation
by elements from L. Further, let hpgze, -, (ot)h,;q1 = T, —¢, (tra), where ty, € K*
is a fixed element. Since all elements h in (14) commute with elements from
the groups X, _., we have t; = t5 = -+ = t,_1. (Indeed, hpy = h'hq, (to) for
some element h’' € H which commutes with elements from subgroups X, .. and
to € K* is a fixed element. This follows from the procedure which gives (15)
from (14) as described above.) Thus the elements hpghq, (t2) do not commute
with the elements from X, _. except at most two such. Let My, be the set of
parameters ¢ for such elements. We have [My,| < 2 and if ¢2 ¢ M, then the
element hpghe, (£2) does not commute with the elements from X, ... Thus, if
t* ¢ My, we can eliminate factors of u from X, _., by conjugation of g,q by
appropriate elements of the group X, ... Therefore, if t2 ¢ M,, in (15) we may
assume wuw ™' € U for every w € W;.

Distribute now our conjugacy classes into pairs corresponding to each root j;
which is conjugate to a, (here 3, = ¢; or 2¢;). Taking elements of the form
(15) belonging to the product of each such pair Cp, C, and conjugating by an
appropriate element w with w € W), we can get elements of the form hy,,hg, (£’
for every t? ¢ M,,. Thus in the product of 2r conjugacy classes we can get
elements of the form

(16) hhg, () hsy (£3) -+ g, (17)u

where u € U, h € H is a fixed element and the parameters ¢;,. .., ¢, run through
K* (or k*) except maybe the cases where t? € M,, for some p,q. If the H-part
in (16) is a regular element then the element of the form (16) is also regular and
conjugate to its H-part. Further, all the H-parts of elements of the form (16)
constitute a set of the form h(Hy ~ Hpr) which is defined in Lemma 6. Thus we
can apply Lemma 6.
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Case r =2 with different root lengths. Here I1 = {3, v} is a simple root system
(we do not identify here roots 8 and 7).

We may assume as above k = 2r = 4. Assume that among these four conjugacy
classes we have two which have representatives in the form (14) with @ = 8
and two classes which have representatives in the form (14) but with o = .
Then using the same arguments as above we can get all elements of the form
hhg(t2)h.,(t3) for a fixed h € H and all ¢,t; € K* (or k*). Now we apply
Lemma, 6.

Now let all four conjugacy classes have representatives in the form (14) corre-
sponding to only one simple root, so a = 3. The case R = By = Cy was already
treated above. Let R = G5. Using the same arguments as above we get in the
product of any two classes a representative in the form

(17) hhg(t*)v

where the element % is fixed and v € U. Further, hg(s)ma,(a)hgl(s) = £,(s"a)
where n = —1 or n = —3 (in the twisted case 3Dy4(g%) we assume ¢ € k*). Hence
for all parameters t2 in (17) except possibly at most three, the element hhg(t?)
does not commute with elements from X, and, therefore, for such parameters t2
we may assume that among root factors of v there are no non-trivial factors from
X,. Hence wyvwy '€ U. Put § = wy(f). Conjugating the elements of the form
(17) by 1w, and multiplying them for such conjugates, we get in the product of
our four classes elements of the form

(18) hhg(t2)hs(s2)u

where h is a fixed element, u € U and the parameters ¢, s can have all possible
values except possibly sets containing not more than six elements. Hence the
set of H-parts of elements of the form (18) which we can find in the product of
four conjugacy classes is a set of the form h{Hy ™ Hjs) and again we can apply
Lemma 6.

Let G be a group of type 2Fy(¢q?) and let 3 be the root corresponding to the
p-orbit {ay.a4} and v to {az, a3} (see Notation 2.3). Then

Xp = (zgla)la € K), X, = (zy(a,b)la,b€ K).

Further, hg(s)z,(a,b)hg'(s) = 2, (s a, s7172b), h,(s)zs(a)h; (s) = 2, (s a)
(this follows from the definition of root subgroups, [St1, §11]). It is easy to check
571720 £ 1if s # 1 — recall that 262 = 1 (see [St1, §11], [C1, Ch. 13]). Assume
that all four classes contain elements in the form (14). Then in the same way as
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above, we can get in the product of any two conjugacy classes elements of the
form hhg(t*)u where h € H is a fixed element, t € K*,¢ # 1, v € U and among
root factors of u there are no non-trivial elements from X,. Put § = w,(8).
Since charK = 2 we have K*?> = K* and therefore we can find in the product
of our four classes all elements of the form hhg(t)hs(s)u where h € H is a fixed
element, t,s € K*,t # 1,s # 1, u € U. Now we can apply Lemma 6. The case
when all four classes have representatives of the form (14) but with +y instead of
B is handled in the same way.

Now consider the case when 3 classes (say C1, Ca, C3) have representatives in
the form (14) only for @ = 3 and one class (say C4) has such a representative
only for @ = 4. We can find in C;C; representatives of the form

(19) hﬁ(totz)hW(So)’U,

where tg, 3¢ are fixed, u € U and t runs through K* (or k*). Also we have a
representative from Cjy in the form

(20) ha(t)hy (s )

where ¢, 5" are fixed, 1 # z, € X, and the element v’ € U has no factors of the
form g, z.

We can find a value of the parameter ¢ in (19) satisfying the following
conditions:

1) hg(tot?)hy(s0) does not commute with all non-trivial elements of the group
Xy;

2) hg(t'tot?) does not commute with all non-trivial elements of the group X,
where w is a positive root which is orthogonal to ~.

Condition 1) implies that in {19) we can get u without non-trivial factors from
X, (by conjugation by an appropriate x,). Then (as in Lemma 5) one can see
that for every fixed d € K* there exists s € K* such that hg(t'tot*)hy(ds?) is
a regular element of G. But the elements of this type can be obtained as above
by multiplying elements which are conjugate to (19) and (20) by appropriate
elements from the group (X.,). Now we have a regular element in H N C1C5Cyj.
Thus applying Lemma 1 we have our statement.

CASE Fy:

We can take representatives of classes Cy,...,Cg in the form (14). Moreover,
we may assume that at least four classes, C1, 0y, C3, C4 say, have the same « in
(14), namely, @ = a; or a = oy (recall that {a1, as, a3,a4} is the simple root
system in the notation of Bourbaki). Indeed, we may have as « a long or a short
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simple root and can always change it for the neighbour of the same length in the
Dynkin diagram. Let Gy be the Chevalley subgroup of G generated by the root
subsystem R; = (a1, a2, a3) if @ = a3, or Ry = (ag,a3,a4) if @ = aq. Then G,
is a group of type B3 or C3. If a = a4 we renumber roots in the opposite order.
Thus we will assume o = ay. Since in representatives of Cy, Cs, Cs, Cy which
are in the form (14) we have a non-trivial factor z, for the same a = ¢, the
same arguments as in the first case show that the product C;C2C3Cy contains
elements of the form hihv where hy € H is a fixed element depending on the
classes C1,C2,C3,Cy, v € U, h € H = HN Gy and hyh is a regular element
of HG,. Moreover, for every regular element of HG; of the form h;h (where
h € Hi) we can find in this product an element of the form h;hv for some
v € U. (Indeed, in the first case we used the fact that all roots have the same
length only to get representatives in the form (14) with a non-trivial root factor
corresponding to the root at the beginning of the Dynkin diagram and to have
the condition of Lemma 7 which in fact also holds for B3 and Cj3.)

Further, in the products C5Cg and C7Cs we can find representatives in the
form (14) with @ = a4 (Lemma 4). Put v = a4 (recall that after renumbering
we assume that the root system R; is generated by a1, az, a3). Using the same
arguments as in the case r = 1 we can find in the product C5CgC7Cs elements
of the form hoh,(t?)u where hy € H is a fixed element depending on classes
Cs, Cs,C7,Cg, u € U and the parameter ¢ runs through K* (or k*).

Let M., be the set of positive roots in R which are orthogonal to . Put

Hy = {h € Hy| B(h) # B(hiY), B(h) # B(hT*hg )for allB € RT
and 6(h) # 1 for all 6 € M, }.

Let H., = {h,(t)|t € K*(or t € k*)}. Then H = HyH,,. Thus, K*2 C 6(Hy)
(or k*2 C §(H,)) for every § € M.,,. Hence, if K is a finite field then the set H is
obtained from the group H; by the exclusion of 2| R*|+|M, | subsets and each such
set has no more than 2(|Hy|/|K™*|) (or 2(|H1|/|k*])) elements. If K is an infinite
field then the set H is obtained from H; by the exclusion of 2| R*|+ |M,| subsets
contained in proper closed subsets of the torus corresponding to Hy. Using the
definition of a big field it is easy to check that Hi # 0 and, moreover, in the case
of an infinite field the set H; is dense in the torus

{hay (1) hay (t2)hay (t3) |t1, t2, t3 € K ).

Now fix h € ﬁl. The definition of ﬁl implies that the element hih is regular
in HGy. Thus hihv € C1C2C3C, for some v € U.
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Put
Hyp = {hy(t®)|t € K*(or t € k*), B(h,(t?)) # B(hT hy *h~V)for every8 € RT}.

If B € M, (ie., B8 is orthogonal to 7), then the condition B(h,(t?))(= 1) #
B(h7*h3h~1) holds for every ¢ because of the definition of the element h € H.
If B ¢ M, then K**(or ¥*?) C B(H,). Thus in this case we exclude from the
set of parameters ¢* at most two elements to get the condition B(h, (%)) #
B(hy hy*h™1). Since |k*| > 4|R*| (recall that our field is big) we have H. 5 #
0. Moreover, in the case of an infinite field the set H. j is dense in the torus
{h(lt K. )

Let t € K*(or ¢ € k*) be an element such that h,(t?) € H, . We know that
we can find an element of the form hihv € C1C3C3Cy where h € I-jl,v e U,
and an element hoh. (t2)u € C5CsC7Cs such that h,(t%) € I:I%h for some u €
U. According to the definition of I, the element hihahh.,(t2) is a regular
element of G. Since we can find an element in C,CyC3C1C5CgC7Cys of the form
hihohh, (t2)u’ for some u' € U, we can also get in this product the regular
element hihaohh, (t2) (conjugating by an appropriate element of the group U).

If K is an infinite field the definitions imply that the set of elements of the form
h]hghh,y(tz) is dense in {hlhzha1 (tl)hQQ (tz)ha3 (t3)ha4(t4)|t1,t2,t3,t4 € F*} =
{ha (£1) Pay (E2) hay (£3) By (£4)]E1, B2, 3,84 € K*}. Thus, in this case we have a
dense subset of semisimple regular elements in C1CyC3C,C5CsC7Cys .

Thus the proof in case F} is complete.

Theorem 3 is now proved. |

5. Covering numbers for Chevalley groups over infinite fields

THEOREM 4: Let G be a Chevalley group over an infinite field K. Then
en(G) < een(G) < 8I(R).

Moreover, every non-central element of G is contained in the product of any 41(R)
non-central conjugacy classes of G.

Proof: We may assume that G is simply connected. Consider G as the group
G (K') where G is the corresponding simple group which is split over K. Moreover,
we may assume B < B,H <HNK< N where B,H, N are the corresponding
subgroups of G(K). We have G(K) = BNB.
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Put X = BuyB where 1wy € N is an element corresponding to the longest
element in the Weyl group. Then X is an open subset of G(K). By Corollary
1, a product of any I(R) non-central conjugacy classes of the group G = G(K )
is dense in G(K). Hence one can find an element g € G in such a product
which also belongs to X. Thus, g = b~1u')0b~2 for some b~1,b~2 € B. On the other
hand, g belongs to some Bruhat cell in the group G, so g = bjwb, for some
bi,bs,€ B,w € N. But bjwbd, € Bu’;OB and, since different Bruhat cells have
trivial intersections, we have w = wg. Thus in a product of any [(R) non-central
conjugacy classes we can find an element from the big Bruhat cell BuwgB.

Now our statement follows from

PROPOSITION 4: Let G be a Chevalley group over a big field K. Further, let
BuwyB be the big Bruhat cell (i.e., wy is the element of the group W of maximal
length). If C1,C>,C3,Cy are any four conjugacy classes of G such that C, N
BwoB # 0 fori=1,2,3,4 then

G~ Z(G) C C1CyC3C,.
Proof: We need the following lemma.
LEMMA 8: Let S be the image of the homomorphism

60:H-— H

where 6(h) = wo(h)h~!. Assume K is a big fiel7. Then for every h € H there
exists an element s € S such that sh is a regular element.

Proof: Let G be an untwisted Chevalley g.oup. Let a be a positive root. Then
B = wo(a) is a negative root. Moreover, 8 has the same length as c. It implies

(21) alha(t™ hg(t)) =t
where n = 1,2, 3, or 4. From (21) we have
(22) K™ Ca(S)CK".

Therefore a(S) ¢ Kera for every root .

Suppose K is an infinite field. We may consider the map #: T — T which is
defined as above, where T is the maximal torus of the corresponding algebraic
group such that H = T'(K). Let S = §(T). The inclusions (22) imply

Sp = hS~ U Kera
aERt
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is a Zariski open subset of hS. Since H = T(K) is dense in T ([Bo], Ch. 18) the
set S = O(H) is dense in S. Hence hS is dense in kS and therefore we can find
such a point in the open subset Sy of hS. This element satisfies the required
condition of the lemma.

Now consider the case when K is a finite field and G is an untwisted Chevalley
group.

Obviously,

|[hS NKera| < 1SN Kera|

for every h € H and every root a. Thus we have from (22)

n|S|
23 hSNKera| <
(23) | < %
and (23) in its turn implies
4
(24) | |J (hSnKera)| < m*ffg_ﬁ”"

a€ER*

Thus if |K*| > 4|R*| > n|R*| then we have a regular element in hS.

Let now G be a finite twisted group. This case differs from the untwisted case
in that for every root &« € Rt we possibly have to consider not one homomor-
phism a: H — K* as in the untwisted case but two or three homomorphisms
o H— K*or a,: H — k* where i = 1 or 1,2 or 1,2,3. Such homomor-
phisms are induced by the conjugation with H of the corresponding one, two or
three parameter root subgroup X, ([C1], [St1]). Moreover, instead of (22) we
will have

E*" C a,(S) C K*

(except for the cases of Suzuki and Ree groups where we have the same as in
(22)). This can be easily checked using formulas for conjugations of root sub-
groups by H ([St1]). Now exclude from our consideration the groups of type
2G5 and 3Dy. Omitting the first type means that we have only two parame-
ter root subgroups. Hence we can simply put in the previous inequality 2|R7|
instead of |[R*|. Omitting the second type of excluded groups means that we
have (Jk*| + 1)? = |K| (again except for the cases of Suzuki and Ree groups).
Thus, if |K| > (4|R| + 1)? then |[k*| > 4 - 2|Rt| = 4|R| and we have the re-
quired inequality as above for all finite twisted groups except groups of type
%Gy and 3D,. Now let G be a group of the type 2G2(q?). Then T = {v}
and h,(t)z,(a,b,c)h; (s) = z, (>3, t7173%, tc) ([St1], §11). Further, let
¥i: S — K* be the corresponding maps (here i = 1,2,3). Since wg = —1



232 N. GORDEEV AND J. SAXL Isr. J. Math.

here we have S = H2. Using the fact that 4 does not divide |K*| ([C1], 13.7) we
get K*2 C 7,(8) for every i and therefore, if |K| > 2-3 + 1, we have a regular
element of the form sh. Let G be a group of type 3D, (¢®). Here we have only
one parameter root subgroups. Thus if |k*| > 4|R*| = 24 we have our regular
element of the form hs. Thus we have such an element if |K| > (24 + 1)3. n

Now we can easily get the statement of the Proposition. Indeed, take represen-
tatives £; = uyh1g € C1, z9 = wohaus where hq, he € H and u1,us € U. Hence
7172 = hu where h = hy1wdhy € H and u = h™ujhuy € U. Let s = wo(t)t7!,
t € H be the element given by Lemma 8 such that sh is a regular element of G.
Put o, = twapt™! = oy ‘tuirgt ™ )ho(tust ™) = woshou’ where u' € U (note,
that we(t) = wotwy * and since w2 € H we have gty | = 1y 'tui). Thus we
have z = z12}, = shv € C1C; for some v € U. Since sh is a regular element
from H, the element z is conjugate to sh. In the same way we can get a regular
element from H in C3C4. Now the result follows from ([EG]). 1

6. Covering numbers for groups of restricted rank
THEOREM 5: Let G be a Chevalley group over a big field. Then

ecn(G) < 4(R)|W].

Proof: Note that among subproducts of any | W | non-central conjugacy
classes we meet an element from B. Indeed, (b2(blu')lbg)bz_l)(I;l"l(i)lwzl;g)al) =
boby i tiabsby and in a product of any | W | elements from the group W there is
some non-empty subproduct equal to the identity. Moreover, we can ensure that
we get a non-central element from B. Indeed, if (b11)(10~1bq) is in the centre of
G then we consider the element (by)hi~1bah™! for an appropriate h € H. Thus
by Theorem 2, in a subproduct of a product of {(R) | W | non-central conjugacy
classes one can find a regular element from H and therefore in a subproduct of a
product of 4l(R) | W | non-central conjugacy classes one can find every element
of G. ]

COROLLARY 2: There exists a constant e = e(r) depending on the natural num-
ber r such that the extended covering numbers of all Chevalley groups of rank
< r are less than e.
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7. The linearity of extended covering numbers for Chevalley groups.
General case

The purpose of this section is to prove the following

THEOREM 6: There exists a positive integer d such that ecn(G) < d rank(G)
for every Chevalley group.
Moreover, if rank(G) > 8 then ecn(G) < 288(rank(G) + 4).

ESTIMATES FOR EXTENDED COVERING NUMBERS OF SL,(K).

Here we follow the general terminology of Chevalley groups for the group
SL,(K) with the natural identification of H with the group of diagonal ma-
trices, B with the group of upper triangular matrices and N with the group of
monomial matrices. Some of the intermediate results here are formulated for
general Chevalley groups.

ProprosiTiON 5: If n > 5, then ecn(SL,(K)) < 6n + 8 if n is odd and
ecn(SLn(K)) < 6n+ 24 if n is even.

In the following lemmas, the term “Coxeter element” is taken to mean an
element of the Weyl group which is a product of all simple reflections wg,, . .., wa,
of a fized simple root system which are taken in any order. Note that in this
definition an element which is conjugate to a Coxeter element need not be a
Coxeter element in general.

LEMMA 9: Let G be a Chevalley group or G = GL,(K) and let g = Wwu be an
element where w € W is a Coxeter element and u € U. Then for every Coxeter
element w' there exists a preimage W' of w' and an element v’ € U such that the
element g’ = W'y’ is conjugate to g.

Proof: For every Coxeter element w there exists a sequence of simple roots
B1 = g, .., Br = a,, (possibly not all distinct) such that all elements in the
sequence wy = wﬁlww/;l,wQ = wlhwlw[}:, ce, Wy = Wg, wk_lw[;: are Coxeter
elements and wy, is the product of simple reflections in the standard order (one can
check this using the Dynkin diagrams). Thus we may assume that w’' = waww, !
for some simple root a.

Let u, be a root factor of u corresponding to « in some decomposition u = uyv
where the element v € U has no root factors corresponding to a. If u, = 1, then
Wau;! € U and therefore the element w,gw, ! has the same form as g, so is a
product of a preimage of a Coxeter element and an element from the group U.
Suppose uq # 1. If 8= w(a) > 0, then ug = 1uaw=! € U and the element

uglguﬂ = uglwuavuﬁ = uglu')uau‘)_lu'muﬂ = Wvug
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is a product of a preimage w of the Coxeter element w and an element of the
group U which does not have a non-trivial factor from the root group X, (note
that § # a because w is a Coxeter element). Hence we return to the previous
case.

Let w(a) < 0. Assume w™!(a) < 0. Then w = w,aw; for some w; which has
length r — 1 ([C2], [St1]). Note that in the case r = 1 there is nothing to prove.
We may assume r > 1 and therefore wy # 1. Since w; is a product of r — 1
different basic reflections we have w;(a) # « and therefore w; = wow, for some
wg which has length r — 2 ([C2], [St1]). Thus w = wawaw,. But in a reduced
expression of ws there are only r — 2 simple reflections. Hence w belongs to a
subgroup of W generated by r — 1 simple reflections and cannot be a Coxeter
element. This is a contradiction. Thus v = w™!(a) > 0. We have now an
element

1

Uaguy " = UgWuavuy ' = (™ tug) (ugvu; )

which is a product of a preimage w of the Coxeter element w and an element
from the group U which has no root factors from X, and we are again in the
case considered first. ]

LEMMA 10: Let G = GL,(K) or SL,(K) and let C C G be a conjugacy class
of regular elements. Then C intersects all Bruhat cells BwB where w is any
element conjugate to a Coxeter element.

Proof: Let W, = W and let W,_; be the subgroup of W, generated by
Weys -, Wa,. Then we have the following decomposition into double cosets,
W, =W,_1 UW,_1wqs, W,_1. Since w is conjugate to a Coxeter element it is an
(r 4+ 1)-cycle as an element of the group Syy, = W,. Thus, w € W,_jwa, Wr_1
and therefore w is conjugate by an element of the group W,_; to an element
of the form wyw,,, where wy € W,_;. Then w; must be an r-cycle and it is
also conjugate by an element of the group W,_s = (wa,,...,Wq,) to an ele-
ment of the form wow,,, where wy € W,_5. Since the elements of W,_; com-
mute with wg,, we have an element of the form wow,,w,,, where wy € W,_»
which is conjugate to w by an element of W,_;. Acting in the same way we get
W = OWq, Wey,_, *** We, 0! for some o € W,_;. Now we consider a rational form
of the class C'; we can take a representative g € C of the form g = w'u where
W = W, Wa,_;  * Wa, and u = ugtg---up for u; € Xo 4oyt ta,- Now let
P = BW,_1B be the parabolic subgroup corresponding to the set {az,...,a,}.
Then u € R,(P) and every preimage & of the element ¢ € W, _; is in a Levi
subgroup of P. Thus, 696 ~! = w(6us~?) € wB. |
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LEMMA 11: Let G be a Chevalley group of type other than %2 As,,(¢*) or a Suzuki-
Ree group. Let ¢ € BwB where w € W is a Coxeter element. Then g is regular.

Proof:  See [St2], Remark 8.8. |

LEMMA 12: Let g € SL,(K) be a non-central element. Suppose that g is in
rational form:

g = wu = w1Ws - Wyt
where wy,...,W,;, are monomial elements from N corresponding to elements
wi,..., Wy € W such that

Wy = Wy Way * - wakl s Wg = wak1+1w0¢k1+2 o ’U)ak2 yeeryWm = wo‘km_1+1 c Wey

and wy, ..., w,, correspond to cycles of lengths k1 +1 > (kg — k1 +1) > --- >
(km = km—1 + 1), and u = uyug - - - uym € U where u, is an element belonging to
the subgroup generated by the X,y € {ak,_,41,...,0%,).

Let w' be an element of W which is conjugate to w. Then there exist an
element v’ € U and a preimage v’ € N of w’ such that g is conjugate in SL,(K)
to w'u’.

Proof: The element w' is the product of independent cycles w? - - - w), which
are conjugate respectively to wy, ..., wy,. Let 3¢, ¥4,..., %, be disjoint subsets
of [1,n] corresponding to those cycles. We may assume [JT, = [1,n] (we can
always add trivial cycles with |X,| = 1).

Consider the set
EZ = {lz]_’ l@2’ ceay lz(k,—k1—1+1)}'

Assume b,y < -+ <lyg,—k,_,+1)- Putn, =k, —k,_1+7. Let G, = SL,, (K) be
the group generated by the root subgroups of the form X5 where § is a positive
2t e k1) T Ele, kg The
assumption implies that a positive root § with respect to this new root system is
also positive with respect to our fixed root system for the whole group SL,(K).
Let V be the linear space of the natural representation of G = SL,(K) with
a fixed basis labelled by €1,...,¢, and let V, be the subspace spanned by the
subsets of this basis corresponding to €5, s € ¥,. Then we have

root of the root system generated by €;,, —€;

V=V1®V2®"'®Vm.

Now we can construct elements g, € GL(V,) of the form [« which have the
same rational form as w,u;, where the element w! is the cycle

(Laalio) (halis) - - - (L, —k 1) s — k0 -1 41))
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and ! is a product of positive root elements (transvections) of SL, (K). As we
see above, such elements are also positive root elements in the group SL,, (K) with
respect to our fixed simple root system. By Lemma 9 we can get by conjugation
in GL(V,,) an element g; of the form w}u! for some element u] which is also a
product of positive root elements of SL,,. Now we have the element

r 1 Y Y A [N
g_gleagz@..‘@gm_wlwz...wmu1u2...um_wu

1 1

which is conjugate in GL,(K) to g. Hence gag'a™loc™! = g for some o €
SL,(K),a = diag(t,1,...,1). Now the element ag’a~! belongs to the same

Bruhat cell as ¢’ and is conjugate to g in SL,(K). ]

LEMMA 13: Let g € SL,(K) be as in the previous lemma. Assume k; > 1.
Then g is conjugate to an element w'u' where v’ € U and l{(w') = l(w) + 1 (here
I(z) is the length of x in W).

Proof: We can write u = vz,,, where z,, € X,, and the element v € U has no
factors from X,,.

We may assume z,, # 1. Indeed, otherwise put 8 = w(ay) and consider the
element a:/_;grgl = w(w—lzﬁw)m;l = m;lux;l for some 1 # zg € Xg. Since
k1 > 1 we have 0 < 8 # ;. Thus we have the form required (since ¢ is a simple
root and interchanging the corresponding component with others we can get the
non-trivial a;-factor to be on the right).

There exists z_o, € X_4, such that z,,1_,, = u')alx;l for some preimage

Wa, € N of a basic reflection w,, € W and some z;,, € X,,. Conjugating g by

1

z_, , we get an element

!

(25) T, WVWq, Ty,

=1 . . /
o = T2, Wilg, Wy, Vg, Ty, -

Since v has no factors from the group X,,, we have w;llvwa1 € U. Further,
the root 8 = w™!(—a1) is positive and different from ;. This follows from the
construction of w and the assumption k; > 1. Thus v = wy, (8) > 0. Now we
have

(26) TZL Wlia, = Wiia, Ty

for some z, € X,. Comparing (25) and (26) we get an element conjugate to g
in the form e, u’ for some «’' € U. From the definition of w we get I(wwy,) =
l(w)+1. |
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LEMMA 14: Let ¢’ = w'v' € SL,(K) where w' € N, ' € U. Suppose that w' is
a product of basic reflections w,, where each such reflection occurs not more than
once and w' contains an independent cycle of length > 2. Then g’ is conjugate
to an element g which has the form as in Lemma 12 with k; > 1.

Proof: Let w' = wjwj---w), where w, are independent cycles which are
products of basic reflections, where such reflections occur at most once in the
decompositions of all the w]. This means that ¢’ is contained in some standard
parabolic subgroup of SL,,(K). Morcover, since w’ contains a cycle of length > 2
a Levi factor of this parabolic subgroup contains a simple component of rank > 1
and the natural projection on this component of the element ¢’ gives a regular
element (Lemma 11). This implies that the minimal polynomial of ¢’ has degree
not less than the length of the corresponding cycle, which implies our statement.
|

LEMMA 15: Let gy = Wqus, gs = taus € SL,(K),n > 6, be two rational forms
where wy = (12)(34)--- ((2s1 — 1)2s1), w2 = (12)(34) - - - ((2s2 — 1)253), 51 < 82
and let Cq,Cy be the conjugacy classes in SL,(K) of g1,g2- Then there exists
an element in C1Cy in the form as in Lemma 12 and with k1 > 1.

Proof: Let 81 < s9 or 253 < n. There exists an element g{ of the form w4’ €
SL,(K) which is conjugate to g; and where w' = (23)(45) - - - (251251 +1). Then
the element g} g» is conjugate to an element of the form wu, where w is a product
of basic reflections with each such reflection occurring at most once and having
a cycle of length > 2. Thus we can apply the previous lemma.
Now let 25, = 2s5 = n. Then
(27)
((23)(45) - - (01))((12)(34) -~ ((m = 1m)) = (1357 -+ (n — 1)) (n(n — 2) ---42).

Since g7, g2 are in rational form, we can write
(28) 01 = W1Te) —exTeg—eg " " Lep_1—ens 92 = W2Ye; —eyYez—eq """ Yen_1—~¢€n

where 4, Yo € Xo. Now instead of g; we take an element g} which is conjugate
to g; and has the form

[T ’ ! '
(29) g1 = w1x63—62x65—€4 z€n_1—5n_2x€1_€n

where w] = (23)(45) - - - ((n — 2)(n — 1))(n1) and =, € X,. Now take a different
ordering of the basis €1, ..., €, of the vector space of the natural representation
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of SL,(K). We put vectors with odd indices in the first s; = n/2 positions,
€1,€3,€5,..., and then the vectors with even indices in the next n/2 positions,
€2,¢€4,.... Note that the elements y, in (28) are represented by upper triangular
matrices with respect to the new basis. The same is true for the elements z/,
in (29). Thus the element g}gs is conjugate to an element which is represented
with respect to the new basis by a matrix of the form wu, where w is a product
of two independent cycles corresponding to first and second n/2 elements of the
new basis (see (27)) and v is an upper triangular matrix. Note that these cycles
are products of basic reflections corresponding to the new order of the basis and
each such reflection may occur at most once. Now we can apply the previous
lemma. ]

We now prove Proposition 5.

Let C1,Cy be noncentral conjugacy classes of SL,(K). We can take repre-
sentatives of these classes in the form g; = uyt, g2 = woug where 1, 1w, € N,
u1,uz € U. Moreover, we may take wi,ws to be elements which are conjugate to
the permutations which appear in the rational forms of corresponding elements.
Thus by Lemma 12 we may assume in the positions of w,ws every pair from
given conjugacy classes of W. Therefore we may assume that w = wywg # 1
and for appropriate choice of w;, w2 we can get in this product every element in
the conjugacy class of w. Now in the product of any two noncentral conjugacy
classes we can get a representative in the form wu where 1 £#w ¢ W and u € U.
Moreover, if we fix the conjugacy class @}, of w in W we can get a representative
of our product of the form «'u’ for every element w’ € Q,,.

Now let n = 21 +1 > 5. Then every n-cycle is in the alternating group A,.
Since ecn(Ay,) = [#/2] + 1 ([D]), multiplying { + 1 appropriate elements from
given nontrivial conjugacy classes of A,, we can get every element of A4,. Now
take any 12({+ 1) + 2 non-central conjugacy classes of SL,(K). We say that the
class is odd (resp. even) if the rational form of a representative has the form wu
for w ¢ A, (resp. w € A;). Then we distribute this set into pairs in which both
classes are odd or even. Only two classes may have no such pair. If the product
of the other 12(I + 1) classes gives the whole of SL,(K), the multiplication by
these two classes does not change the result. Thus we need to consider only
6(l + 1) pairs. In the product of such a pair we can find a representative wu
where w € A,, w # 1. From the above it follows that in the product of any
I + 1 noncentral conjugacy classes obtained in the product of such pairs we can
find an element of the form wu where w € W is a Coxeter element of W and
u € U. Such an element is regular (Lemma 11). Further, every noncentral
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element of SL,(K) is contained in the product of any three regular conjugacy
classes ([Levi]). Therefore every element of SL,(K) is contained in the product
of any six regular conjugacy classes. Hence ecn(SL,(K)) < 12(I+1)+2 = 6n+38.

Now let n = 2l > 6. Consider 12(l + 1) + 12 non-central conjugacy classes.
Distribute these classes into pairs as above. We divide these pairs into two sets:
in the first we take 6(I + 1) and in the second 6, where there can be one pair
which consists of odd and even elements. For every pair from the first set we fix
an even nontrivial class contained in the product of this pair. In the product of
any (I + 1) such classes we can get elements of the form wu for every w € A,
(since ecn(An) = 1+1 by [D]). Now take any pair from the second set. There are
two possibilities. The first possibility is that we have a representative in at least
one class which is odd or which satisfies the condition of Lemma 13. In the latter
case Lemma 13 implies that we can find a representative of the class of the form
wu where {{w) is odd. Iu the second case rational forms of representatives of both
classes have forms wu,where w is a product of an even number of independent
transpositions. Now use Lemmas 13 and 15, and get in the product of our two
conjugacy classes of SL,(K) an odd class. Now we fix an element of the form
wu where [(w) is odd which is contained in one of the pairs of the second class
or in the product of such a pair. Now every element of the group S, ™ A,, can
be written in the form ww for some w € A,. Thus, if we consider a product of
(I +1) pairs from the first set and a pair from the second set. we can find in this
product or in a subproduct (with one class removed) an element of the form wu,
where w is a Coxeter element of W, which is a regular element in SL,(K) by
Lemma 11.

Now every non-central element can be found in a subproduct of 3(l + 1) pairs
from the first set and 3 pairs from the second ([Levl]), and therefore in the
subproduct of 6(I41) pairs from the first set and 6 pairs from the second set. Note
that we take the subproduct of a fixed subset of our 12(1+1)+12 classes. Thus the
product of this subset gives us the whole group and therefore the whole product
also coincides with SL, (K). Hence ecn{SL,(K)) < 12(I+ 1)+ 12 = 6n + 24.

GENERAL COXETER CELLS.

Definition: Let R be a root system (possibly reducible) and II be its fixed simple
root system. Further, let R' C R be a root subsystem (possibly empty) generated
by a simple root system Il C II. Then every Coxeter element of W(R') (i.e., a
product of all basic reflections wq, a € II' in any order, or, the identity if R’ = ())
will be called a general Cozeter element of the Weyl group W(R).
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Definition: Let G = BNB be a group with (B, N)-pair. The cell BwB will be
called a general Cozeter cell if w is a general Coxeter element.

PROPOSITION 6: Let G be a finite crystallographic Chevalley group (untwisted
or twisted). Then every non-central conjugacy class of G has a non-empty inter-
section with a general Coxeter cell of the Bruhat decomposition of G.

For the purpose of the proof of Proposition 6 we need to recall some notions
and to introduce some notation.

1. Recall that R is the irreducible root system corresponding to G ([St1], [C1])
generated by a simple root system I1. The group G is generated by root subgroups
Xa,o € R. Further, G = BNB,B = HU,N/H & W = W(R),rank(G) =
rank(R).

2. If the statement is true for all simply connected Chevalley groups it will be
also true for all groups. Thus we will assume that G is simply connected.

3. We can exclude the cases of Suzuki-Ree groups. Indeed, since G is crystal-
lographic, it is not of type 2Fy. The other cases are groups of rank one. There is
nothing to prove for such groups since both Bruhat cells are general Coxeter.

4. Thus we may assume G = ™X;(¢™) where m = 1,2,3 and X; = A;,...,G,.
Put K = Fym,k = F;. There exists a simple and simply connected algebraic
group G defined and split (if m = 1) or quasi-split (if n > 1) over k such that
G = G(k) = G(E)F where F is a Frobenius map ([C2]). Further, there exists a
maximal torus T of the group G which is defined over & and stable under F and
such that H = T(k). Then we have an irreducible root system R with respect to
T such that R = R/F (here we take a root from R to correspond to an F-orbit
in R). Also, Il = II/F for the simple root system.

5. Now let X C II, Gx = (X,| o € (X)). Then there exists a subset
X C Hsuch that X = X /F'. Further, there exists a simply connected semisimple
algebraic group G} which is defined and split or quasi-split over the field k£ such
that Gx = G g (k).

6. Cross-section of regular conjugacy classes for G - In [St2] it is shown that
for a semisimple algebraic group defined over a field L there exists a cross-section
of conjugacy classes of regular elements. Moreover, if such a group is simply
connected and quasi-split over L, then this cross-section can be defined over L
under the condition that this group has no simple component of type 2A,,. If
such a component does exist, we can construct over L a closed subset of our
group which intersects every semisimple regular conjugacy class in exactly one
point. Thus in our case we have a closed subset Ny of the group G}( defined
over the field k satisfying the following condition:
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(x) Every regular semisimple conjugacy class of G 3 intersects N in exactly
one point.

7. Description of Ng. We follow [St2, 9.8, 9.11]. If Gx does not contain any
components of type 2A,, then

(30) Ng = ][] wsXs.
pex

Here the X g are root subgroups defined over K. However, the whole product is
F-stable and can be defined over & with an appropriate choice of preimages g
of basic reflections. Moreover, we can get such a set N3 for every order in the
product (30) and every such product satisfies (x). (Note that compared to [St2]
we change the position of wg, X, but that is not essential.) We can rewrite (30)
in the form

(31) Ng = [1 s [1 Xow) = iV,
gex  0(8)

where 3 is an element belonging to Gx and Vy is a closed subgroup of U. %
defined over k. Indeed, we can move g in (30) to the left side by interchanging
it with various terms Xg. Then Xz in (30) gets replaced by the root subgroup
Xg(ﬂ), where 6(8) = w(p) for w which is the product of all reflections corre-
sponding to roots which appear in (30) to the right of 8. Such a root 6(8) is
positive (see [St2]). Further,

(32) Wi = H Wy

for appropriate choice of preimages w,. This follows from the definition of w 4.
Now from (31) and (32) one can see that every F-stable element from the set
Ny is in a general Coxeter cell of G.

Now we consider the case when the group Gx contains a component of type
2Ays. This occurs only if the whole group G is of the same type and in this
case there exists at most one such component in Gx. Thus we have X =Y U Z
(respectively, X=YUZ ) where the group Gy has no components of type 2 A,
and Gz is the group 2A4;,(¢?). We define Ny in the same way as above. Let
Z = {71, ..,72s} be the numbering where F(7v,) = vas41-. Put § = 5 + Yor1.
Let B; = T5X; be a Borel subgroup of (X.s). Put

(33) NZ = (1b5X5 U li)g.Z'lszJ) H ’U'J,le%
1#s,5+1
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where z, € X,,,,z3 € X,,,, are some fixed non-trivial elements. Put

+1
(34) Ng = Ny N,

Then the set N satisfies condition (x), is F-stable and can be defined over k with
an appropriate choice of preimages of elements from the Weyl group and elements
x1, 2. The definitions (33) and (34) also imply that the F-stable elements from
Ny are in general Coxeter cells of the Bruhat decomposition of G (by the same
argument as above).

8. The group HGx. Let h € H = T(k). Then the set AN is a closed subset
of G 3. Moreover, if N3 is defined over k then AN is also defined over k.

LEMMA 16: Let hg € HGx where g € Gx, and let C be the conjugacy class of
hg in the group T G %- Suppose that hg is a semisimple regular element of TG %-
Then C intersects the set hN¢ just in one point.

Proof: We can write h = thy for some ¢ which lies in the centre of TG % and
for some hy € G %- Note that these two elements need not be defined over k.
However, the closed subset h; Ny satisfies the condition (x) (but need not be
defined over k). This follows from the constructions of N (the multiplication
by hy changes only the preimages of the same reflections in (29), (33)). Further,
the multiplication by the central element of a semisimple regular element changes
neither the semisimplicity nor the regularity. Hence the conjugacy class of h1g
intersects the set #; N in just one point. The same is true for C' and thyNg =
hNz. ]

LEMMA 17: Every regular semisimple element of the group HGx is conjugate
to one from a general Coxeter cell of the Bruhat decomposition of G.

Proof: Let 0 € HGx be a regular semisimple element of the group TG % and
let C' be the conjugacy class of this element in this group. The previous lemma
implies that C N hNy consists of one point for some h € H. Since C and hNy;
are both defined over k the element in the intersection is in HGx. Since G. ¢ is
simply connected, the elements in HG x which are conjugate in TG % are also
conjugate in HGx ([C2, Proposition 3.7.3]. But the elements from the set N3
which are also in Gx lie in a general Coxeter cell, as we have seen above in 7.
The same is true for the elements from AN . n

Proof of Proposition 6: The groups of the form HGx also possess a (B, N)-pair
and therefore we can formulate the statement as in the Proposition for groups of
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this form. We prove the statement for groups of the form HGx (it is clear that
G is also such a group, with X = II). Let C be a non-central conjugacy class of
HGx. If C is a semisimple regular class then we have our statement from Lemma
17. If not, then there exists an element g € C which belongs to a proper standard
parabolic subgroup P of HGx. This follows from the fact that p = char &k divides
|Crcy (g)] for such an element g, as we see from the properties of the Frobenius
map and well known facts about centralisers of semisimple elements, and from
([C2, Proposition 6.4.5]). Let L be the Levi factor of P of the form HGy where
Y C X and let ¢: P — L be the natural homomorphism. Assume that P is a
minimal parabolic subgroup containing elements from C. Then ¢(g) is a regular
semisimple element of the group L. Thus g = su, where s is a semisimple regular

element of L and u € R, (P). Again by Lemma 17, oso ™}

is in a general Coxeter
cell for some o € L. Since 0 R, (P)o~! = R, (P) then ocgo~! is in the same cell.

The Proposition is now proved. |

PRrROOF OF THE THEOREM. Now we are able to prove the Theorem. We may
restrict our attention to the case of finite fields, because of Theorem 3. Also we
need to consider only groups of rank > 8, and hence only classical groups, other
than type A, already considered above. Thus G here is a finite Chevalley group
of type Br(q), Cr(q), Dr(q)- 2An(g®), *Dn(g?).

Let Ry = {@1,...,ar-1) (with the standard numbering of simple roots) , G =
(X1ele € Ry) (note that Gy = SL.(K)/Z for some Z < Z(G)), W1 = W(Ry),
Ny is the corresponding subgroup of Gy, Hy = H N Gy. Further, let P = BN B
be the corresponding parabolic subgroup, L = HG, its Levi factor, V = R, (P)
and ¢: P — L be the natural homomorphism.

LeEMMA 18: Let Cq, Cs be two non-central conjugacy classes of G. Then at least
one of the sets Cy N P, Co N P and C1Cy N P is not empty and is not contained
in the center of the group G.

Proof: We can choose g1 = uyin € Cq, g2 = waug € Cy where uy,up € U and
wy,w are general Coxeter elements (Proposition 6). If both classes have trivial
intersection with P, then among basic reflection factors of wq,wy there is wq, .
Moreover, we may assume w; = WjW,,, W2 = W, wh (by the same argument
as in the proof of Lemma 9). Hence g = ul‘l(glgz)ul € P. Suppose g € Z(G).
Then g192 € Z(G). This implies w1y € Z(G),u; = uy . Since w, is a general
Coxeter element, there exists a positive root « such that o # wy(a) > 0. Now
take a root element z, # 1 and consider ¢} = 239124 = T, u1(h1TaWy  )in
instead of g1. Now gigs € P> Z(G). [ |
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LEMMA 19: Let C1,C3 be two non-central conjugacy classes of G such that
(C1 0 P),(Cy N P) are non-empty sets. Then ¢(g) ¢ Z(L) for some element
g € (C1 UCy U C1C2) N P (recall that ¢ is the natural surjection P — L).

Proof: Let g € P and ¢(g) = h € Z(L). Then h € H and g = hu for some
u € V. According to Lemma 2, we may assume that the root factor u,, of u
is not trivial. Also, by Lemma 4 we may assume |K| < 3 or |k| < 3: otherwise
we can find in C1Cs an element of the form g = hu (also in P) such that u
has non-trivial a-factor for any chosen simple root «; taking « € {ay,..., -1}
we can make sure that ¢(g) ¢ Z(L). Similarly, the case D,(g) can be excluded
because of Lemma 3. Put @ = o, = €., or 2¢, and 8 = ¢, + 6,1 (we take the
standard numbering for root systems B, and C,).

Now we assume that for every element g from the sets C; N P,C> N P we have
#(g) € Z(L). Thus, representatives g1, g2 of the sets C; N P,C2 N P have the
form described above. Below, using this form we show that either a conjugate
g € P of g1, 9o has the property ¢(g) ¢ Z(L) (and this is a contradiction with
our assumption) or a product g € P of conjugates gz, g» has the property ¢(g) ¢
Z(L).

Let G be of type Cr(q) or 2Az,_1(g?).

We can take representatives g1, g2 of Cp, Cs in the form

!
g1 = h1zazpvr, g2 = hoxyve

where hy, hy € Z(L) and the elements v1, vz € V have no factors from the groups
Xa, Xp and 24, z,,, 23 # 1. (This can be obtained by conjugation by appropriate
elements from the group X,,_,; see [St1], Lemma 33.)

We may assume hi,hy € Z(G). Indeed, otherwise the element hy (or hg)
does not commute with elements of the group X, because it commutes with all
Xa,, @ <71, but hy ¢ Z(G) (or hy ¢ Z(@)). Thus conjugating g; (or g3) by an
appropriate element from the groups X,, X,,_, we can get an element in one of
these conjugacy classes of the same form as g; but with z, = 1. Now we have
¢ = tingriz! € P and 6(¢') ¢ Z(L).

If #/, = z7' then g = 1, (g192)w; " € P and ¢(g) ¢ Z(L). If zl, # z! then
|K| =3 (or |k| = 3) and z}, = z,. Conjugating the elements g1, g2 by appropriate
elements 71,79 € (Xia) we can get elements

/ . ! ! . !
g1 = hlyawa'Ul, g2 = thaya'Uz

where y, € Xq,v},v5 € V. Note that in both expressions w, is the same
preimage of w, because of the assumption z/, = x,. Since ()% = ha(—1)
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we have ¢’ = glgy = h'v' where W' € H, v/ € V and [W,z4,_,] # 1. Thus
La,_,9'T5" | is an appropriate element.
Let G be of type B,(q) with ¢ # 2™ (the case ¢ = 2™ is included in C,.(q)).
Let g = hu be a representative of one of these classes. Assume h ¢ Z(G);
then [h,z,] # 1. Now conjugating g by appropriate elements from X, we get

an element g’ of the form hu’ where all root factors of v’ of the form z., are

-1

trivial. If «' has a factor of the form z ¢ then 1w, g

is an appropriate
element. If all such factors are trivial then v’ = 1 and ¢’ = h. If h does not
commute with all long root elements we can return to the previous case. We
assume now that hy € Cy, hy € Cy where the elements hy, hy € H commute with
all long root elements. By conjugation we can get elements in Cs, C; of the form
ZTa, hoTo, 40, Tar_1+2ams hlx;rl where z4,_ 424, # 1. If g is the product of
such elements then w,, gu’)grl is an appropriate element from the product C1Cs.

Suppose h € Z(G). Then conjugating the element g by an appropriate element
Ta, ; € Xa,_, We can get an element of the form ¢’ = hu/, where v/ € V has
non-trivial factor uj, and trivial factor u, _ ., (here oy + ar = €_1) in
some decomposition into product of root elements. We may also assume that v’
has no non-trivial factors from the group X . _,. (Otherwise w.,_, g, is
an appropriate element.) Then conjugating ¢’ by some non-trivial z_(4, _, +a,) €
X _(ar_1+ar) We get an element g” such that ¢(g") ¢ Z(L) (this follows from the
Chevalley commutator formula).

Let G be of the type 2D, 1(¢?).

Put v = ¢,_1. We can take representatives g; € Cy, g2 € Cs in the form
g1 = b1z, (s1)zg(mi)uiza(te), g2 = hata(ta)zy(s2)zp(ma)us

where hi,hs € Z(L) and the elements u;,us € V have no root factors corre-
sponding to «, 8,7 and t1,t3 # 0. If hy or hy ¢ Z(G) then the proof is the same
as in the case B(q). Assume hy, hy € Z(G). We can always make mq or my = 0.

Thus, if t2 = —t; we have the same situation as in the case C,.(q). If |k| = 2
we can always get {5 = —t; = ¢; by conjugation of g; by an appropriate element
ha(t).

Now |K*| = 8. Thus —1 € K*?. We may assume t; ¢ t2K*? (otherwise we can
make t; = —t5 by conjugation of g; by an appropriate element hy(t)). We also
assume my # 0,mg = 0 (this can be done by conjugation with elements from
the group Xa, ;). Let 51 = 0. Then w, g1y ! is an appropriate element. Thus
we assume s; # (. Let s = 0. Then x_vgzx:,ly is an appropriate element for
some z..y € X_. Thus we assume s5 # 0. The same arguments as above give
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us the assumption s; ¢ soK*2. Now we have t; ¢ t,K*%, 51 ¢ s2K*?. Since we
can change ,(t1) to z,(£t1) by conjugating g1 by w,,_, we can also add the
assumption ¢ ¢ s K*2. Again by an appropriate conjugation we can get t; = s1
and tp = sp. Conjugating g2 by an appropriate element from X, _, we can get
83 = 0. Then conjugating g2 by z_,(1) we get an element which has a non-trivial
root factor corresponding to a,_;. Thus we get the required element.

Let G be 2A4,,(¢%).

Recall that here R = B, ([C1]), @ = a, = ¢ and X, = (z,(a,b)) is a two
parameter subgroup. Let w, be a preimage of w, € W; then [uq, ha(t)] =
ha(tt?) (recall that @ is a field automorphism corresponding to the Frobenius
map F). Thus, if |k| = 3 we can find an element ¢+ € K* such that ¢ = —1 and
obtain [Wa, he(t)] = he(—1). Now using the same representation of elements in
C1,Cs as in the proof of Lemma 4 we can obtain an element g = hu € C1Cy
such that [h, zq,_,] # 1. Now z4,_ gz,
can exclude the case |k| = 3 and we assume |k| = 2. Now take representatives of

, is an element as required. Thus we

g1 € C1, g2 € Cy as in the previous case
g1 = hizy(s1, 81)zg(my)viza(t1, 1), g2 = hoza(ta, t5)T (2, sh)zs(m2)v2

where in the first expression ¢; # 0 or t| # 0 and ¢3 # 0 or ¢} # 0 in the second
one. We may also assume that m; # 0 and ms = 0, or m; = 0 and my # 0. If
t1 =ty = 0 then ] = 5, = 1 and then wW,g;g2w; " is an appropriate element. We
assume t; # 0. Let {2 # 0. Then conjugating g, by an appropriate element from
the group HX, we can get zo(t2,th) = hox; (t1,t))hs". Also, we may assume
my # 0,my = 0 (by conjugating with z4,._,). Thus %,(g192) is an appropriate
element. Now we may assume ¢ = 0,1, # 0. Also, we can make s; = 0. If in
addition s] # 0, we are in the situation described above. Let s; = §{ = 0. If
my # 0 then Wy g1y ! is an appropriate element. Assume s; = s} = m; = 0.
Then x_ﬁglxgl is an appropriate element for some x_g € X_g. |

LEMMA 20: Ifrank(G) > 8, then the action of Gy on each factor V;/V, 1 of the
central series of V' is augmentative.

Proof: This follows from the Chevalley commutator formula. |

Now we can prove our estimate. We use the same trick with subproducts as we
used in the case SL,(K). Assume that we have 2-2-(6r+24)-3-2-2 noncentral
conjugacy clases; if we identify a subset of this set the product of which covers
the whole group, then the product of all classes also covers the whole group. By
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Lemma 18 the subproduct of any two classes contains a noncentral element from
P. Then by Lemma 19 the subproduct of two classes which have noncentral
intersection with P has a nontrivial Levi component. From the estimates for
SL.(K), Lemma 20 and Proposition 3 (with k = 2 because every finite Chevalley
group is generated by two elements) we see that the subproduct of 2-2(6r+24)-3-2
classes contains the whole group G,V and therefore the group U. But every
element of G is conjugate to an element from U~U ([EG]). Thus the product of
48(6r + 24) noncentral conjugacy classes covers the whole group G.
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